

SEA LEVEL RISE STUDY

FINAL – DECEMBER 2018

ASSOCIATED ENGINEERING QUALITY MANAGEMENT SIGN-OFF Signature; Date 2018/12/14 (26-19-08

CONFIDENTIALITY AND © COPYRIGHT

This document is for the sole use of the addressee and Associated Engineering (B.C.) Ltd. The document contains proprietary and confidential information that shall not be reproduced in any manner or disclosed to or discussed with any other parties without the express written permission of Associated Engineering (B.C.) Ltd. Information in this document is to be considered the intellectual property of Associated Engineering (B.C.) Ltd. In accordance with Canadian copyright law.

This report was prepared by Associated Engineering (B.C.) Ltd. for the account of City of Nanaimo Engineering and Public Works Dept.. The material in it reflects Associated Engineering (B.C.) Ltd. is best judgement, in the light of the information available to it, at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Associated Engineering (B.C.) Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© 2019, City of Nanaimo. All Rights Reserved.

The preparation of this study was carried out with assistance from the Government of Canada and the Federation of Canadian

Municipalities. Notwithstanding this support, the views expressed are the personal views of the authors, and the Federation of Canadian Municipalities and the Government of Canada accept no responsibility for them.

REPORT

Executive Summary

The City of Nanaimo is preparing for the future impact of climate change through their upcoming Climate Change Resiliency Strategy. The City's long coastline on the Strait of Georgia is very important for the economic, social, and environmental health of the City. Situated along the shore are numerous public parks and infrastructure, important environmental resources and habitat, private residences, major ferry terminals, and large industrial sites. Understanding the potential hazards and increased risk that climate change brings is key to planning and building towards a resilient City.

The purpose of this Sea Level Rise Study is to provide localized information on potential flood levels to facilitate informed planning. The traditional standard, and what has been used in this study, is flood analysis based on the 1-in-200-year event – the event that has 0.5% probability of occurring in any given year. To allow for long term planning and timing of upgrades, we have created maps for scenarios reflecting the years 2018, 2050, and 2100.

The Flood Construction Level (FCL) is useful in establishing the minimum elevation that buildings or infrastructure may be constructed to, to protect them from water levels that are smaller than or equal to the specified flood event. Determining the FCL includes summing the high tide, storm surge, and wind and wave effects. An additional parameter, freeboard, is added on top of this to provide an extra factor of safety. As coastal effects on maximum sea level are highly variable based on bathymetry and exposure, detailed modelling of wave and wind effects was completed to provide FCLs for shorter sections of shoreline with uniform characteristics. Mapping the FCL gives a strategic-level of understanding of areas which may be impacted, now or in the future, by elevated sea levels.

Results from the study show that there are several low-lying areas along the coastline which are vulnerable to sea level rise. Specifically, Departure Bay, Duke Point, Protection Island, and areas of downtown have land that is located below the FCL. Assessing the extent of risk posed in these areas would require further work, but these are the areas the City should focus on to mitigate future loss. The areas that are built up on higher rocky bluffs along the coast, such as the North Slope, have a greater degree of protection to sea level rise.

In addition to sea level rise effects, coastal erosion was investigated to estimate the rate of coastal retreat. Erosion effects were found to be concentrated in isolated locations and are primarily attributed to areas with softer coastlines and high-energy wave/tidal action. Generally, the coast is relatively stable and in agreement with erosion rates in published literature. We recommend that the City continue to monitor areas of concern such as the North Slope.

Table of Contents

SECTI	ON		PAGE NO.
Execu	tive Su	immary	i
Table	of Con	tents	ii
List of	Table	S	iv
List of	Figure	es	v
List of	Abbre	viations	vii
1	Intro	duction	1-1
	1.1	Project Background	1-1
	1.2	Project Location	1-2
	1.3	Tsunami Risk	1-5
	1.4	Coastal Flooding History	1-6
	1.5	Background Data Collection	1-7
2	Coas	tal Processes Analysis	2-1
	2.1	Introduction	2-1
	2.2	Technical Approach	2-1
	2.3	Extreme Value Analysis (EVA) of Local Wind Data	2-6
	2.4	Local Surge Modelling (MIKE 21 HD FM)	2-9
	2.5	Wind – Wave Modelling (MIKE 21 SW)	2-16
	2.6	Calculation of Wave Effects – Setup and Runup	2-20
	2.7	Derivation of Flood Construction Level	2-22
	2.8	Flood Construction Level Mapping Procedure	2-23
3	Erosi	on Analysis	3-1
	3.1	Overview	3-1
	3.2	Visual Analytical Procedure	3-1
	3.3	Erosion Modelling	3-7
	3.4	Erosion Analysis Findings	3-12
4	Sea L	evel Rise Risk Assessment	4-1
	4.1	Assessment Results	4-1
	4.2	Risk Assessment Conclusions	4-9
5	Optic	ons for Further Analysis	5-1
	5.1	Probabilistic Calculation of Sea Level Rise	5-1

	5.2	Refined Inundation Modelling	5-1				
	5.3	Economic Risk Assessment	5-2				
	5.4	Sea Level Rise Management Plan	5-2				
	5.5	Coastal Erosion Monitoring	5-4				
6	Conclu	sions	6-1				
	6.1	Implications of the results	6-1				
	6.2	Recommendations for Further Work/Analysis	6-1				
Certific	Certification Page						
Appendix A - Details of Calculation of Wave Effects: Year 2018							
Appendix B - Details of Calculation of Wave Effects: Year 2050							
Appendix C - Details of Calculation of Wave Effects: Year 2100							
Appendix D - FCL Mapping: Year 2018							

- Appendix E FCL Mapping: Year 2050
- Appendix F FCL Mapping: Year 2100

List of Tables

PAGE NO.

Scatter Analysis of Wind Records from EC Station c46146 Halibut Bank	2-8
EVA Parameters for Directional 200-year Wind Speeds at Nanaimo	2-8
MIKE 21 HD FM Model Parameters Adopted for the Present Analyses	2-13
MIKE 21 SW Model Parameters Adopted for the Present Analyses	2-17
Summary of Factors to be Applied with DIM (from FEMA, 2005)	2-21
Calculated FCLs for SLR Scenario 2018	2-24
Calculated FCLs for SLR scenario 2050	2-26
Calculated FCLs for SLR scenario 2100	2-28
Results from Visual Inspection of Historic Coastal Retreat	3-5
Risk to Buildings & Lots	4-1
Risk to Drainage Infrastructure	4-4
Risk to Sanitary Infrastructure	4-6
	Scatter Analysis of Wind Records from EC Station c46146 Halibut Bank EVA Parameters for Directional 200-year Wind Speeds at Nanaimo MIKE 21 HD FM Model Parameters Adopted for the Present Analyses MIKE 21 SW Model Parameters Adopted for the Present Analyses Summary of Factors to be Applied with DIM (from FEMA, 2005) Calculated FCLs for SLR Scenario 2018 Calculated FCLs for SLR scenario 2050 Calculated FCLs for SLR scenario 2100 Results from Visual Inspection of Historic Coastal Retreat Risk to Buildings & Lots Risk to Drainage Infrastructure Risk to Sanitary Infrastructure

List of Figures

Figure 1-1	Project Overview and Key Location Map					
Figure 1-2	Project Chainage Map					
Figure 1-3	Departure Bay, Looking North					
Figure 1-4	Evidence of slope failure; close to Driftwood Place 2017	1-5				
Figure 1-5	LiDAR Coverage Area					
Figure 2-1	Typical Coastal Transect Configuration – with wave effects	2-5				
Figure 2-2	Position of Environment Canada buoy c46146 Halibut Bank (red dot) in					
	relation to the City of Nanaimo	2-6				
Figure 2-3	Wind rose for winds recorded at EC station c46146 Halibut Bank	2-7				
Figure 2-4	Overall extent of the MIKE 21 model bathymetry	2-10				
Figure 2-5	Detail of model bathymetry around Nanaimo. The red lines indicate the extent					
	of the study area (City of Nanaimo only)	2-11				
Figure 2-6	Detail of model mesh for the study. The red lines indicate the extent of the					
	study area	2-12				
Figure 2-7	Map of maximum local storm surge for Year 2018. Surge levels are relative to					
	constant water level = +3.31 m CGVD2013	2-14				
Figure 2-8	Map of maximum local storm surge for Year 2050. Surge levels are relative to					
	constant water level = +3.57 m CGVD2013	2-15				
Figure 2-9	Map of maximum local storm surge for Year 2100. Surge levels are relative to					
	constant water level = +3.98 m CGVD2013	2-16				
Figure 2-10	Wind-wave field calculated by MIKE 21 SW for 200-year wind from NNE	2-18				
Figure 2-11	Wind-wave field calculated by MIKE 21 SW for 200-year wind from SE	2-19				
Figure 2-12	Wind-wave field calculated by MIKE 21 SW for 200-year wind from ENE	2-20				
Figure 2-13	Coastal Transects Used for the Calculation of Wave Effects					
Figure 2-14	Comparative Plot of Flood Construction Levels Along Nanaimo Coastline					
Figure 2-15	Comparative Plot of Still Water Levels Along Nanaimo Coastline					
Figure 2-16	Comparative Plot of Wave Effects Along Nanaimo Coastline					
Figure 3-1	Coastline Classification Map	3-3				
Figure 3-2	Example of Coastal Erosion	3-5				
Figure 3-3	Time Series of Water Levels Recorded at Nanaimo in June-July 2017	3-8				
Figure 3-4	Time series of water levels recorded at Campbell River (top), wind speed and					
	wave height from Halibut Bank (centre) and wind direction (bottom) from					
	Halibut Bank in early April 2010	3-9				
Figure 3-5	Maximum bed shear stresses during simulation period in June-July 2017	3-10				
Figure 3-6	Maximum bed shear stresses during four-day simulation period in April 2010.					
	Combined tide and waves	3-11				

Figure 3-7	Maximum bed shear stresses during four-day simulation period in April 2010.	
	Tide only	3-12
Figure 4-1	Heatmap showing concentration of building vulnerability to 2100 FCL	
	scenario	4-3
Figure 4-2	Heatmap showing concentration of drainage infrastructure vulnerability to	
	2100 FCL scenario	4-5
Figure 4-3	Heatmap showing concentration of sanitary infrastructure vulnerability to	
	2100 FCL scenario	4-8
Figure 5-1	Stages of Sea Level Rise Management Plan	5-3

List of Abbreviations

AAD	Annual Average Damage
AEP	Annual Exceedance Probability
CBR	Cost-Benefit Ratio
CGVD1928	Canadian Geodetic Vertical Datum 1928
CGVD2013	Canadian Geodetic Vertical Datum 2013
DEM	Digital Elevation Model
DTM	Digital Terrain Model
EC	Environment Canada
EVA	Extreme Value Analysis
FCL	Flood Construction Level
FEMA	Federal Emergency Management Agency
GIS	Geographic Information Systems
HHWLT	Higher High Water Large Tide
Lidar	Light Detection and Ranging
MCA	Multi-Criteria Analysis
MFLNRO	Ministry of Forests, Lands and Natural Resource Operations
MWD	Mean Wave Direction
MWL	Mean Water Level
NOAA	National Oceanic and Atmospheric Administration
NPV	Net Present Value
SLR	Sea Level Rise
SLRMP	Sea Level Rise Management Plan
SWL	Still Water Level

REPORT

1 Introduction

1.1 PROJECT BACKGROUND

The City of Nanaimo ("CoN", "the City") is currently producing a Climate Change Resilience Strategy (CCRS) as part of its preparation for climate change. Other documents, including the Official Community Plan (2008), Community Sustainability Action Plan (2012) and the City of Nanaimo Strategic Plan Update (2016-2019), will combine with the CCRS to inform the City's climate change adaptation. A major component of preparing for climate change is the understanding of sea level rise and how it may impact the coastal areas of Nanaimo. Sea level rise (SLR) denotes the increase in mean sea levels as a result of global warming driving thermal expansion of seawater and melting terrestrial ice-sheets and glaciers.

To support the City's Climate Change Resilience Strategy, Associated Engineering (AE) and our team of subconsultants, DHI Water & Environment, Inc. (DHI) and Westmar Advisors Inc. have been retained to complete a Sea Level Rise Study; which will help inform the upcoming CCRS. The objective of the Sea Level Rise Study has been to identify coastal areas of Nanaimo that are vulnerable to sea level rise and storm surge for years **2050** and **2100**. The **present-day** (2018) conditions were also analysed to establish a study benchmark. Specifically, the intent is to develop maps showing the 200-year FCL (Flood Construction Level) for the specified years.

FCLs are used to keep living spaces and areas used for storage of goods above flood levels. The 200-year FCL is the traditional standard in BC for floodplain mapping and represents the expected water level for the 200-year event plus an additional allowance in height defined as freeboard. Specific to coastal mapping, the development of the FCL takes account of the effects of relative sea level rise (SLR), an adjustment to the SLR accounting primarily for uplift or subsidence of the land surface, tide, storm surge (regional and local), wave setup and wave runup, along with a nominal allowance for freeboard. A 200-year event refers to the flood level that has a 1 in 200 chance (0.5%) of being equalled or exceeded in any given year.

In addition to the development of the FCL for the three time-horizons in question, the potential rate of coastal retreat (i.e. coastal erosion) has also been estimated in this study.

Project work began upon appointment in mid-June 2018, with review of various sources of background data, described in Section 1.5. During the project period, team members attended an internal CoN stakeholder meeting that helped define the scope of works and potential deliverables. We also conducted a boat survey of the coastline in early September 2018, the goal of which was to photograph substantial swathes of coastline in support of the erosion analysis.

We subsequently completed coastal and erosion analyses, as per the methodologies presented in Sections 2 and 3. These results were then used to inform a strategic-level risk assessment and produce finalised **Flood Construction Level Mapping** for the three time-horizons mentioned above.

1.2 PROJECT LOCATION

The City of Nanaimo is located on the eastern side of Vancouver Island, as shown in Figure 1-1. The City has a land area of approximately 91 km² and a coastline, as shown in Figure 1-2, along the Salish Sea that will be vulnerable to sea level rise. Elevations in the study area range from sea-level in lowland coastal areas, to 340 m (geodetic datum) in Westwood Lake Park, to the west. Much of the coastline through the main urban centre is elevated and protected by way of rock armour revetments. The coastline is well developed with numerous private residences, tourist amenities, commercial industries and transportation facilities.

The study area also includes Newcastle and Protection Islands. Newcastle Island is a marine provincial park, approximately 3.3 km² in area. There is limited infrastructure on the island, with no risk receptors located on its coastline. Protection Island is an inhabited island, approximately 0.71 km² in area. The island is densely developed, with numerous properties and transportation infrastructure being potentially vulnerable to extreme changes in coastal processes.

Gabriola Island, though not a focus of this study, does exert influence of the coastal processes in Nanaimo Harbour, being located immediately to the east. Gabriola Island is shown in Figure 1-1, directly underneath the inset map.

The study area covers a range of coastal settings, including high rocky bluffs, developed and undeveloped shoreline with varied exposures and beach composition (shingle, gravel, sand and silt), estuaries and lagoons, coves, to name a few. The study area is affected by coastal processes originating from within the Strait of Georgia. These processes include large tidal variations, but the City shoreline area is sheltered from extreme open ocean waves and tsunamis. Local strong winds can generate moderate local waves and storm surge from within the Strait. Wind waves in the middle of the Strait, at the Halibut Bank buoy, indicate significant wave heights reaching nearly 5 m at the extreme. Astronomical tide ranges are somewhat greater than 5 m, with peak residual storm surges (deep-water plus local) of generally less than 1.5 m, based on the tide gauge at Nanaimo Harbour. Local storm surge will typically be much lower along most of the coastline where steeper sloped bottom contours exist. In areas with extensive shallow mild sloping bottom contours, local storm surge can be somewhat more significant.

Figure 1-1 Project Overview and Key Location Map

Figure 1-2 Project Chainage Map

Figure 1-3 Departure Bay, Looking North

From discussions with City staff and photographic evidence provided to us at the outset of the project, there are a number of locations directly impacted by coastal processes at present. The Departure Bay area (study chainage 18+000 m) regularly sees elevated tide and wave levels. In particular, Battersea Road (study chainage 18+300 m), adjacent to Cilaire, is subjected to frequent overtopping due to a combination of high tides and wave runup¹. It is not uncommon for coastal debris to be washed up onshore many metres inland during major storm events. This has also been known to occur on Departure Bay Rd. (study chainage 17+800 m), which can be accompanied by backing up and surcharging of the local storm system that discharges to Departure Bay beach. In terms of relative elevation, proximity and density of development, Departure Bay seems to be the area most vulnerable to sea level rise in the City.

The North Slope area of Nanaimo has seen significant mass-wasting/slope failures in recent history. This area is generally defined as being approximately between Lewis Road (study chainage 0+850 m) and Norasea Road (study chainage 4+000 m). Significant development in the area, and subsequent slope

¹ Discussion with City of Nanaimo Drainage Dept. personnel.

failures have triggered the completion of a number of geotechnical stability assessments. The shoreline is approximately 40-50 m high, with a gradient of 25-30 deg. The stratigraphy of the local area has been well documented by other studies; however, the underlying surficial geology could be classified by the following²:

- Marine/glaciomarine sand & gravel.
- Vashon Drift material.
- Quadra Sediments.
- Basal Till.

Weak layers of silt/clay, and relative steepness, give rise to the area's vulnerability to slope failure. Coastal erosion can contribute to this mass-wasting, by attacking and compromising the toes of slopes. However, it is most likely <u>not the sole cause</u>; slope instabilities and shallow failures can occur under wet conditions through the winter months.

² Figure 2.1 North Shore Stability Study; Generalized Hydrogeologic Cross Section for Regimes II & III. Golder Associates. April 2000

Figure 1-4 Evidence of slope failure; close to Driftwood Place 2017³

1.3 TSUNAMI RISK

1.3.1 Summary of Risk

The potential impact of tsunamis reaching the Nanaimo shoreline and influencing the FCL mapping is considered briefly. This assessment is preliminary and should not be construed as replacing the need for an engineering study of tsunami impacts on FCL mapping.

A general assessment of tsunami impacts on the Canadian coastline has been given by Leonard, Rogers and Mazzotti⁴. The following commentary relies on this and simplifies portions of this, but also extends general findings to conditions at the Nanaimo coastline on the basis of judgement. There are three kinds of tsunamis or slide-generated waves that may reach Nanaimo. Each of these, together with an assessment of the magnitude of the resulting wave runup along the Nanaimo shoreline may be summarized as follows:

⁴ Leonard, L.J., Rogers, G.C., and Mazzotti, S. 2012. A Preliminary Tsunami Hazard Assessment of the Canadian Coastline. Geological Survey of Canada, Open File 7201.

³ Storm Group – Erosion and Safety Location Areas. City of Nanaimo. October 19th 2017.

<u>Pacific Ocean Tsunamis</u>: For tsunamis originating from the Pacific Ocean, the most severe possibility is associated with a large (e.g. magnitude 9.0) earthquake along the Cascadia subduction zone (i.e. "the big one"). Computer models show that the resulting tsunami waves will diminish as they move through Juan de Fuca Strait and between the San Juan and Gulf Islands and then northward along the Strait of Georgia. When they reach Nanaimo, the tsunami waves are expected to result in runup of 0.5 - 1.0 m. With respect to the probability of such an event occurring, it is known that the last great earthquake occurred in 1700.

<u>Locally-generated Tsunamis</u>: Locally-generated tsunamis may arise from a local earthquake at shallow crustal depths or from a submarine slide. The most severe possibility is associated with a large submarine slide corresponding to a collapse of the front of the Fraser River delta. However, given the relative location of Nanaimo, there would be a notable reduction of wave energy, and the resulting wave runup along the Nanaimo shoreline is again expected to be 0.5 - 1.0 m. The geological record has revealed no evidence of tsunami deposits along the Fraser River delta, so that the corresponding probability of this large collapse is considered to be very low.

<u>Waves Generated by Landslides and Debris:</u> To be significant, such waves would require a large, sudden slide associated with a steep, unstable coastline very nearby (similar to the coastline along Howe Sound). Consequently, damaging waves due to a landslide or debris avalanche are not expected to occur.

1.3.2 Consequence on Flood Construction Levels

As noted above, a tsunami reaching the Nanaimo shoreline has a very low probability of occurrence, and is expected to result in wave runup of 0.5 – 1.0 m. However, the probability of a tsunami arriving simultaneously with HHWL, design storm surge and design storm waves would be even more remote. That is, a tsunami should be considered to be an alternative, not a simultaneous constraint relative to maximum water levels associated with extreme storms. Given that local storm surge and storm waves generally exceed 1 m in contributing to FCLs, it is not expected that tsunamis are a critical constraint with respect to the determination of FCLs. As such, tsunami risk has not been considered any further in this study.

1.4 COASTAL FLOODING HISTORY

A desktop investigation of flood history in the local area showed that historic risk to the City from coastal inundation/sea level rise has been minimal. Much of the flood records and news events for the local environs tend to be related to extreme rainfall and subsequent fluvial flooding. Last year's January declaration of emergency in the Regional District of Nanaimo was an example of 'typical' flooding in the area. In this instance, heavy rainfall caused flooding and landslides across parts of Vancouver Island, including Parksville, Whiskey Creek and Lantzville⁵. Low-lying areas in the City along the Chase and Millstone Rivers, as well as Cat Stream, would most likely be affected in similar rainfall events⁶.

Despite the lack of newspaper and internet records, as described by anecdotal evidence in Section 1.2, there are low-lying coastal areas of the City frequently impacted by wave overtopping and coastal

⁵ https://globalnews.ca/news/3992983/emergency-declared-district-nanaimo-flooding-landslide/

⁶ https://nanaimonewsnow.com/article/566407/fast-moving-and-dangerous-rivers-expected-surge-during-incoming-storm

inundation. With the increasing impact of climate change and rising sea levels, it is likely that the coastal flood record will only continue to grow.

1.5 BACKGROUND DATA COLLECTION

At the outset of the project, the City provided AE with a number of different information resources in support of our work. These resources included LiDAR (Light Detection and Ranging) information, previous geotechnical studies, tsunami and storm surge mapping, orthoimagery and other pertinent GIS information. Some of the supplied information and their intended uses are discussed in further detail below.

1.5.1 LiDAR Information

The LiDAR information was captured in February 2016 by Eagle Mapping Ltd, for the area shown in Figure 1-5. It was supplied to the project team, in DTM format (digital terrain model), with a 0.5 m x 0.5 m cell size. The projection information associated with the LiDAR is shown below:

- Projection: UTM Zone 10N
- Horizontal Datum: NAD83 (CSRS)
- Vertical Datum: CGVD28

At the outset of the project, it was decided that all deliverables be provided in CGVD2013 vertical datum. This is the new reference standard for heights across Canada and replaces the older CGVD28. As per BC government published information⁷, a conversion for Central Vancouver Island (+0.15 m) was therefore applied to the LiDAR to meet the new reference standard. The LiDAR has been used to provide elevation data for hydrodynamic modelling, as well as plotting of the completed flood construction levels.

⁷ https://www2.gov.bc.ca/gov/content/data/geographic-data-services/georeferencing/vertical-reference-system

Figure 1-5 LiDAR Coverage Area

1.5.2 Orthorectified Aerial Survey

In the initial information package to AE by the City, hardcopy aerial orthoimages were provided. They were as follows:

- June 30,1972; scale 1:16,000; monochromatic
- April 1999; scale 1:30,000, colour
- June 4, 2003; scale 1:38,000, colour

Upon examination, it was found that these hardcopy datasets, despite being useful as background information, would not be of use for the study's erosion analysis, as detailed in Section 3. This was due to the datasets' relatively large scale and inability to be used in a GIS software package. Therefore, the City subsequently provided the project team with a second aerial imagery pack. This consisted solely of digital, georeferenced files that could be analysed and manipulated in a GIS platform. The datasets in this pack were as below:

- 1996, spatial resolution 25cm (assumed), monochromatic.
- 1999, spatial resolution 50cm (assumed), colour.
- 2002, spatial resolution 50cm (assumed), monochromatic.
- 2003, spatial resolution 10cm (assumed), monochromatic.
- 2006, spatial resolution 10cm (assumed), colour.
- March/April 2009, spatial resolution 10cm, colour.
- July 2012, spatial resolution 10cm, colour.
- July 2014, spatial resolution 30cm, colour.
- March/April 2016, spatial resolution 5cm, colour.

These orthoimages became the backbone by which coastal change was measured as described in Section 3.

1.5.3 **Previous Geotechnical Studies**

In support of our erosion analysis, the City supplied the project team with 3 geotechnical reports related to the critical North Slope area. They were as follows:

- North Shore Stability Study: Review of Geotechnical Information and Recommendations for Further Work. June 1994. HBT Agra Limited.
- North Slope Stability Study: Review of Geotechnical Information and Recommendations.
 December 1995. Norbert R. Morgenstern, P.Eng.
- North Slope General Slope Stability Study. January 2001. Golder Associates.

Each of the reports add to the understanding of the geotechnical challenges associated with the North Slope. The reports have been useful in this study during the completion of the erosion analysis, as detailed

in Section 3. Their findings were used to appropriately classify the North Shore coastline, as well as frame the nature of historic erosion at that location.

2 Coastal Processes Analysis

2.1 INTRODUCTION

The methodology applied to determine Flood Construction Levels (FCLs) at specific transect locations along the shoreline of Nanaimo is presented in detail in this section of the report.

In brief, the approach consists of utilizing regional parameters provided in the BC Ministry of Forests, Lands and Natural Resource Operations (MFLNRO) Coastal Floodplain Mapping - Guidelines and Specifications⁸ (Coastal Guidelines 2011) whenever possible, and to combine these with numerical modelling of local effects (local wind waves, local storm surge, wave setup and wave runup) to determine the FCLs.

It should be mentioned at this juncture that <u>FCLs are not inundation extents</u>. FCLs are the maximum elevation that the sea reaches at the land/beach interface, plus an allowance for freeboard. As will be described in later sub-sections, FCLs are a sum of both the extreme still water level and maximum wave run-up + set-up, with some exceptions. To project these FCLs inward from the coastline <u>is a conservative</u> approach to mapping since adding each flood component together does not take into account the joint probability of the extreme of each component occurring simultaneously.

In reality, in many cases, the wave height would reduce as it propagates inland from the coastline, thus, reducing the actual water level. This could be the case where the still water level plus static wave setup exceeds the shoreline berm crest height and depth limited breaking would limit the wave heights propagating overland, or if the waves break on the shoreline berm, overtop it and pool on the coastline, as well if there is a fetch by which waves could 'regrow'. Thus, the accuracy of mapping could be improved by undertaking further refined, 2D inundation modelling of the floodplain. This will be discussed in further detail in Section 5. With this proviso, for purposes of the present study the estimated FCLs have been converted without modification to inundation contours on the maps. This is an appropriate approach for a high-level, strategic study.

2.2 TECHNICAL APPROACH

Coastal Floodplain Mapping - Guidelines and Specifications characterize the Flood Construction Level (FCL) as the sum of the higher high water large tide (HHWLT) elevation, plus relative sea level rise (SLR) tied to a particular time horizon (such as year 2050 or year 2100), plus a SLR adjustment due to uplift or subsidence, plus the estimated storm surge associated with the selected design storm, plus the estimated wave effects (setup and runup) associated with the design storm, and finally an allowance for freeboard.

Stated as an equation:

FCL = HHWLT + SLR + SLR adjustment + storm surge + wave effects + freeboard(1)The estimation of each of these components is now considered in turn.

⁸ Coastal Floodplain Mapping - Guidelines and Specifications. KWL, for MFLNRO. June 2011

2.2.1 Tide Level, Sea Level Rise and Regional Storm Surge

2.2.1.1 HHWLT

HHWLT (Higher High Water Large Tide) is the average of the highest water levels from each year over a 19 year nodal modulation cycle. The elevation of HHWLT at Nanaimo is provided in Volume 5 of the Tide and Current Tables⁹. This indicates that HHWLT relative to MWL (Mean Water Level) datum is 1.9 m.

The Coastal Guidelines 2011 provide recommended values of SLR relative to the year 2000. The year 2000 is the 'benchmark year' in the Coastal Guidelines 2011, from which projections into the future are derived.

For consistency with the study datum of CGVD2013, the HHWLT relative to MWL needs to be adjusted so that it can be inputted into Eq. (1). MWL relative to CGVD2013 in the benchmark year, 2000, has been assessed (taking account of known changes in SLR) as +0.12 m i.e. this is the amount that must be added to the 1.9m from Volume 5 of the Tide and Current Tables.

Therefore, the following value for HHWLT has been adopted in the present study:

HHWLT = +2.02m CGVD2013

2.2.1.2 SLR

Sea Level Rise relative to the year 2000 is taken from Fig. 2-2 of the Coastal Guidelines 2011; or, equivalently, a pro-rated value based on the recommended SLR of 1.0 m in 2100 relative to 2000. That is:

SLR =	+0.18m for year 2018	(2)
	+0.50m for year 2050	
	+1.00m for year 2100	

However, the Coastal Guidelines 2011 state: "These values represent an initial precautionary approach and will require regular updates as new data become available, and sea level rise projections are updated." Therefore, improvements to these values have been taken into account. Since the Coastal Guidelines were issued in 2011, the actual (measured) SLR value for 2018 is now available¹⁰ and may be used instead for 2018. SLR for the year 2018 is in fact +0.06m rather than +0.18m as proposed in the Guidelines. As this is an actual measured value, we have adjusted the projections for 2050 and 2100 by the same difference in 2018 values (measured vs. projected). That is, rather than rely on the SLR values in equation 2 above, the values of SLR that have been used in this study are:

⁹ Canadian Tide and Current Tables, 2018, Volume 5, Juan de Fuca Strait and Strait of Georgia, Canadian Hydrographic Service

¹⁰ see: https://climate.nasa.gov/vital-signs/sea-level/

Updated SLR =

+0.06m for year 2018 +0.38m for year 2050 +0.88m for year 2100

The above numbers are based on an assumption, using an observation between measured SLR and projected SLR in the original Coastal Guidelines 2011 document. It is noted that the figures for both 2050 and 2100 are estimates only and could be further refined using detailed climate modelling outside the scope of this study.

2.2.1.3 SLR Adjustment

Information on Sea Level Rise adjustment due to land uplift for the East Coast of Vancouver Island and for the year 2100 relative to the year 2000 is available in Table 2-4 of Coastal Guidelines 2011. Since the Guidelines only provide the SLR adjustment for year 2100, a linear interpolation was assumed for the SLR adjustment, with a starting value of zero in year 2010. This leads to:

SLR adjustment =	-0.02m for year 2018
	-0.08m for year 2050
	-0.17m for year 2100

(The negative values indicate that the study area is experiencing uplift.)

2.2.1.4 Deep-Water Storm Surge

According to the Coastal Guidelines 2011, storm surge is defined as the sum of deep-water (or regional) surge plus local storm surge. As detailed therein, deep-water storm surge includes contributions from changes in atmospheric pressure but excludes local effects such as shoaling of the deep-water surge in shallow coastal areas and the effect of storm winds blowing over shallow water.

According to Coastal Guidelines 2011, the value of deep-water storm surge associated with the 200-year storm as listed in Table 2.1 of the Guidelines for the Strait of Georgia is based on an analysis of long-term water level records. The Guidelines provide a value of deep-water storm surge = +1.25m for 200-year conditions for the Strait of Georgia. This value is considered suitable for the present analysis and was therefore adopted for the present study.

Deep-water storm surge = +1.25m for 200-year conditions

2.2.1.5 Local Storm Surge & Wave Effects

Local storm surge and wave effects (wave set-up and wave-runup) are a focus of this study and have been addressed through numerical hydrodynamic modelling as described in subsequent sections of this report.

2.2.1.6 Still Water Level

An additional definition used in the following discussion is the Still Water Level (SWL). This is the maximum constant water level for a given scenario without accounting for wave effects or freeboard. The SWL includes the summation of HHWLT, SLR, SLR adjustment, and storm surge as described above and in Equation (1).

2.2.1.7 Freeboard

Finally, it is traditional that a nominal value of freeboard is added to the preceding components in order to develop the FCL. Based on the recommendation in the Coastal Guidelines 2011, the freeboard has been assumed as follows:

Freeboard = +0.6m

2.2.2 Local Storm Surge

Local storm surge is characterized by local winds raising the water surface on shallow nearshore bathymetry and topography and was calculated separately from deep-water storm surge. DHI used the depth-averaged hydrodynamic model MIKE 21 HD FM¹¹ to compute the local storm surge at the study site.

An Extreme Value Analysis (EVA) of the local winds (recorded at Halibut Bank buoy) was carried out to determine directional wind speeds associated with a return period of 200 years for use as input for the local modelling. The observed Halibut Bank wind was then applied uniformly over the entire model domain and considered as representative of over-water winds.

The design winds were applied as input to the MIKE 21 hydrodynamic model to compute the contribution from local storm surge to the FCL. Details about the EVA of measured winds is presented in Section 2.3 of this report. Section 2.4 describes the numerical modelling of local storm surge using the hydrodynamic model MIKE 21 HD FM.

2.2.3 Wave Effects – Wave Setup and Runup

Wind generated waves at the Strait of Georgia contribute to the total FCL and were therefore included in the analyses carried out by DHI.

Swell waves from the open Pacific Ocean are not expected to reach the Nanaimo shoreline and weren't considered for this study. Waves in the Strait of Georgia are generated from local winds blowing over relatively short fetches. DHI applied the 200-year winds from the EVA to a MIKE 21 SW (spectral wave) model¹² to estimate the local wind-wave conditions along the Nanaimo shoreline for different combinations

¹¹ https://www.mikepoweredbydhi.com/products/mike-21/hydrodynamics

¹² https://www.mikepoweredbydhi.com/products/mike-21/waves/spectral-waves

of water level and wind speed and direction. Section 2.5 of this report describes the numerical modelling of wind waves using the spectral wave model MIKE 21 SW.

The DIM (direct integration method) tool developed for FEMA by Dr. Robert Dean (FEMA, 2005) was applied to calculate wave setup and runup on the natural beaches, using the local wind-wave conditions hindcasted by the MIKE 21 SW model as starting point for the analysis. Details about the calculation of wave effects can be found in Section 2.6 and in Appendices A through C of this report. Finally, Flood Construction Levels are derived in Section 2.7. Figure 2-1 shows an example coastal transect.

Figure 2-1 Typical Coastal Transect Configuration – with wave effects

The presence of trees along the shoreline was ignored in the calculation of local storm surge and wave effects. It is assessed that this approach will result in higher (conservative) estimates of local surge elevation and wave setup and runup, since the presence of the trees represents a higher resistance to the overland flow and blocking of the incident waves in real life than in the model setups.

For the purposes of analyses, we have also assumed that the foreshore shape and composition does not change in both the short and long-term. Potential changes to the foreshore shape and/or composition due to erosion/sediment deposition, development or construction of flood defences can affect the calculation of extreme water levels. These activities have not been considered as they are difficult to anticipate and not appropriate for this study's scope.

2.3 EXTREME VALUE ANALYSIS (EVA) OF LOCAL WIND DATA

26-years of measured wind data from Environment Canada (EC) station c46146 Halibut Bank, extending to the most recently available wind records, were downloaded. Since the anemometer on the buoy sits 5m above the water surface, the measured wind speeds were corrected to the standard elevation of 10m by use of the 1/7th power law. Corrected wind speeds have been used throughout the rest of this report without explicit reference to this being made.

The location of the Halibut Bank buoy is shown by the red dot in Figure 2-2 below:

Figure 2-2 Position of Environment Canada buoy c46146 Halibut Bank (red dot) in relation to the City of Nanaimo

Wind data from EC buoy c46146 consist of hourly records over the period March 13, 1992 18:44 – August 22, 2018 22:28 UTC time. The wind record includes data gaps. A wind rose for the entire period of record for station c46146 is shown in Figure 2-3 below:

Figure 2-3 Wind rose for winds recorded at EC station c46146 Halibut Bank

Table 2-1 summarizes the results from the scatter analysis of the hourly wind data from station c46146 for the entire period of the record. Results from the scatter analysis are consistent with the information displayed by the wind rose in Figure 2-3. Strongest and more frequent winds are from the ESE and WNW sectors.

								WS (m	/s] - WS						
		[0-2[[2-4[[4-6[[6-8[[8-10[[10-12[[12-14[[14-16[[16-18[[18-20[[20-22[[22-24[Total	Accum
	[326.25-348.75]	1.060	1.703	1.000	0.234	0.060	0.018	0.006	0.001	-	-	-	-	4.082	99.997
	[303.75-326.25]	1.177	2.154	1.935	1.162	0.595	0.306	0.189	0.057	0.018	0.003	0.001	-	7.597	95.916
	[281.25-303.75]	1.368	2.681	4.124	4.487	2.413	0.753	0.184	0.037	0.016	0.005	0.001	0.003	16.072	88.319
	[258.75-281.25]	1.022	1.474	1.799	1.849	1.048	0.241	0.047	0.004	0.002	0.001	-	-	7.488	72.247
	[238.25-258.75]	0.695	0.513	0.264	0.109	0.050	0.008	0.002	0.001	-	-	-	-	1.640	64.759
Ş	[213.75-238.25]	0.655	0.350	0.132	0.056	0.016	0.004	0.004	-	-	-	-	-	1.216	63.119
-	[191.25-213.75]	0.611	0.374	0.159	0.071	0.022	0.004	0.002	-	-	-	-	-	1.242	61.903
lon	[168.75-191.25[0.819	0.699	0.449	0.225	0.096	0.026	0.003	0.001	-	-	-	-	2.316	60.661
Ę.	[148.25-168.75]	0.902	1.554	1.292	0.826	0.385	0.136	0.043	0.009	0.005	-	-	-	5.149	58.344
	[123.75-146.25]	1.207	2.690	3,151	2.415	1.255	0.472	0.162	0.058	0.012	0.002	-	-	11.425	53.195
≥	[101.25-123.75]	1.246	2.720	3.877	4.240	3.106	1.527	0.716	0.252	0.070	0.011	0.003	-	17.766	41.770
	[78.75-101.25]	1.090	1.845	2.746	3.382	2.899	1.694	0.698	0.267	0.055	0.005	0.001	0.001	14.682	24.004
	[56.25-78.75]	0.787	0.680	0.424	0.420	0.334	0.156	0.036	0.007	0.001	-	-	-	2.846	9.323
	[33.75-56.25]	0.822	0.385	0.067	0.020	0.009	0.001	-	-	-	-	-	-	1.303	6.477
	[11.25-33.75]	0.915	0.521	0.088	0.015	0.003	-	-	-	-	-	-	-	1.540	5.175
	[-11.25-11.25[1.120	1.357	0.835	0.231	0.065	0.020	0.004	0.001	-	-	-	-	3.634	3.634
	Total	15.496	21.700	22.341	19.742	12.355	5.364	2.093	0.694	0.178	0.027	0.006	0.003	99.997	-
	Accum	15.496	37.196	59.537	79.278	91.633	96.998	99.091	99.784	99.962	99.989	99.994	99.997	-	-

 Table 2-1

 Scatter Analysis of Wind Records from EC Station c46146 Halibut Bank

Frequency of Occurrence [%] (1992-03-13 - 2018-08-22; 1h) All

Wind records from EC station c46146 were subsequently used for the determination of directional wind speeds with associated return periods of 200 years. Wind data from EC station c46146 were sorted by directional sectors and an Extreme Value Analysis (EVA) was carried out on the wind data. Wind directions follow the meteorological convention, i.e. they are 'blowing from'.

The Peak-Over-Threshold method was adopted for the EVA and the threshold wind speed varied by directional sector to extract approximately 1 peak wind speed per year of record for the EVA analysis (~27 peaks in total). The Weibull distribution combined with the Method of Moments was found to consistently provide the best fit to the data sample and was therefore adopted for the calculation of the 200-year wind speeds.

Results from the EVA of wind speeds at Halibut Bank are summarized in Table 2-2 below.

Sector	Threshold speed (m/s)	Number of peaks	200-yr wind speed (m/s)	Wind direction (°N)
NW	15.50	27	23.9	315.0
NNW	10.50	28	22.6	337.5
Ν	8.70	28	18.0	0.0
NNE	7.30	30	15.5	22.5

 Table 2-2

 EVA Parameters for Directional 200-year Wind Speeds at Nanaimo

Sector	Threshold speed (m/s)	Number of peaks	200-yr wind speed (m/s)	Wind direction (°N)
NE	7.60	28	15.2	45.0
ENE	11.50	29	18.2	67.5
E	16.80	28	29.7	90.0
ESE	17.25	29	22.7	112.5
SE	16.00	27	25.1	135.0
SSE	13.00	28	19.5	157.5
S	10.80	29	16.0	180

Based on the results in Table 2-2, it was assessed that winds from nine directional sectors (NW, NNW, N, NNE, NE, ENE, E, ESE and SE) are of relevance for the generation of local storm surge and wind-waves at Nanaimo and were thus adopted for the two-dimensional modelling of local storm surge and wind waves with MIKE 21.

The shoreline of Nanaimo is sheltered from waves propagating from SSE and S by Gabriola, Mudge, De Courcy and other islands south of the city. Furthermore, 200-year winds from these two directions are significantly weaker than e.g. winds from E, ESE or SE. Therefore, winds from directions SSE and S were left out of all subsequent analyses.

2.4 LOCAL SURGE MODELLING (MIKE 21 HD FM)

The two-dimensional, depth-integrated hydrodynamic model MIKE 21 HD FM¹³ was used to compute local storm surge for the 200-yr wind speeds listed in Table 2-2 for nine wind directions (NW, NNW, N, NNE, NE, ENE, E, SSE and SE).

The bathymetry of the area of interest, which includes the Strait of Georgia, was resolved using an unstructured mesh consisting of triangular elements of different sizes and shapes. Increased resolution (smaller mesh elements) was used to resolve the areas of interest around Nanaimo. Bed elevations were interpolated to the nodes of the triangular mesh elements from LiDAR data provided by the City of Nanaimo (as detailed in Section 1.4.1); this dataset was supplemented as required with data from NOAA's British Columbia 3 arc-second Bathymetric Digital Elevation Model (DEM)¹⁴ and NOAA's Puget Sound 1/3 arc-second NAVD88 Coastal Digital Elevation Model (DEM)¹⁵.

Figure 2-4 shows the overall spatial extent of the MIKE 21 model bathymetry. Due to modelling considerations, the bathymetry does not only cover the Strait of Georgia, but also includes Puget Sound,

¹⁵ https://data.noaa.gov/dataset/puget-sound-1-3-arc-second-navd-88-coastal-digital-elevation-model

¹³ https://www.mikepoweredbydhi.com/products/mike-21/hydrodynamics

¹⁴ https://data.noaa.gov/dataset/british-columbia-3-arc-second-bathymetric-digital-elevation-model

the Strait of Juan de Fuca and the islands and channels north of Campbell River. The limits of the present study are bounded on this figure by the red polygon.

Figure 2-4 Overall extent of the MIKE 21 model bathymetry

Figure 2-5 shows a detail of the model bathymetry around the project area. Figure 2-6 shows a detail of the unstructured mesh resolution around Nanaimo. The higher resolution within the study area was adopted to better resolve the bathymetry in shallow areas, where local storm surge is expected to be highest.

Figure 2-5 Detail of model bathymetry around Nanaimo. The red lines indicate the extent of the study area (City of Nanaimo only)

Figure 2-6 Detail of model mesh for the study. The red lines indicate the extent of the study area

Model simulations were executed for three alternative sea level rise scenarios, with an initial water level, calculated as the addition of HHWLT, SLR, adjustment to SLR, and regional storm surge (see Equation [1] for reference). The resulting initial water levels for the 3 time horizons are as follows:

Initial water level =	+3.31m for year 2018
	+3.57m for year 2050
	+3.98m for year 2100

Three hydrodynamic model simulations, corresponding to the above three water levels for years 2018, 2050 and 2100, were carried out for all 9 wind directions, thus resulting in a total of 27 hydrodynamic model simulations. The hydrodynamic model was forced by the 200-year winds listed in Table 2-2. Other relevant hydrodynamic model parameters have been summarized in Table 2-3 below.

Model Parameter	Value
Flood and dry	Default. Drying depth = 0.005 m, flooding depth = 0.05 m, wetting depth = 0.10 m
Density	Barotropic (constant)
Eddy viscosity	Constant, $\varepsilon = 10 \text{ m}^2/\text{s}$
Bed resistance	Constant, Manning number M = 42 m ^{1/3} /s
Coriolis forcing	Included, varying in domain
Wind forcing	Included, constant wind speed and direction (see Table 2-2). Wind friction factor f_w varying with wind speed ($f_w = 0.001255$ for wind speeds < 7 m/s, $f_w = 0.002425$ for wind speeds > 25 m/s, linearly varying for wind speeds between 7 and 25 m/s.
Boundary conditions	Fraser River boundary condition: constant water level, specified according to SLR horizon (2018, 2050 or 2100). The other boundaries were defined as land (zero velocity).

 Table 2-3

 MIKE 21 HD FM Model Parameters Adopted for the Present Analyses

Constant wind speed and direction were used to force the hydrodynamic model in each of the 27 runs, which extended in time until a steady-state condition was reached by MIKE 21 HD FM. The local storm surge was subsequently obtained by subtracting the corresponding constant water level from the surface elevation calculated by the hydrodynamic model.

The nine 2D maps of storm surge, corresponding to the nine different wind directions for a given SLR horizon (2018, 2050 or 2100), were interrogated to identify the maximum local surge at any location within the model domain, regardless of wind direction.

Results for maximum local storm surge associated with the three SLR horizons are shown in Figure 2-7 to Figure 2-9 below and were used for the calculation of FCLs. As could be expected, maximum values of local surge occur in relatively shallow areas along the coastline of Nanaimo, for example at Departure Bay.

Figure 2-7 Map of maximum local storm surge for Year 2018. Surge levels are relative to constant water level = +3.31 m CGVD2013

Figure 2-8 Map of maximum local storm surge for Year 2050. Surge levels are relative to constant water level = +3.57 m CGVD2013

Figure 2-9 Map of maximum local storm surge for Year 2100. Surge levels are relative to constant water level = +3.98 m CGVD2013

2.5 WIND – WAVE MODELLING (MIKE 21 SW)

The spectral wave model MIKE 21 SW¹⁶ was used to hindcast wind-wave conditions along the Nanaimo shoreline.

The same scenarios adopted for the modelling of local storm surge with MIKE 21 HD FM were used for the wave simulations: 200-year wind speeds from nine wind directions (ranging from NW to SE) were applied to the wave mode for three different initial water levels corresponding to SLR scenarios in years 2018, 2050 and 2100, thus yielding a grand total of 27 model simulations.

The same model mesh and bathymetry (shown in Figure 2-4 through Figure 2-6) used for the simulation of local storm surge was used to hindcast local wind-waves along the shoreline of Nanaimo.

Because of the relatively large water depths at the locations where wave parameters are extracted from the MIKE 21 SW model results for the assessment of wave effects, detailed description of depth-limited wave breaking and bottom friction are assumed not to be important. Therefore, wave breaking was included in the model setup with a default constant value of the depth-limited wave breaking parameter γ_2 . Relatively low bottom friction was included in the model, which will result in higher (more conservative) wave heights.

¹⁶ https://www.mikepoweredbydhi.com/products/mike-21/waves/spectral-waves

All model boundaries were defined as closed, which is consistent with local wind-wave generation. Relevant model parameters are listed in Table 2-4 below.

Table 2-4MIKE 21 SW Model Parameters Adopted for the Present Analyses

Model Parameter	Value
Spectral formulation	Fully spectral
Time formulation	Quasi stationary
Frequency discretization	Logarithmic, 25 bins, fmin = 0.125 Hz, C = 1.0905773
Directional discretization	360 degrees, 36 bins
Water level conditions	Constant; includes HHWLT, SLR, SLR adjustment and deep-water storm surge
Wind forcing	Included, constant wind speed and direction (see Table 2-2). Uncoupled formulation, Charnock parameter = 0.02
Wave diffraction	Not included
Bottom friction	Constant Nikuradze roughness $k_N = 0.004 \text{ m}$
Wave breaking	Constant $\gamma_2 = 0.9$
White capping	C_{dis} = 4.5, Δ_{dis} = 0.5, power of mean angular frequency = -1, power of mean wave number = -1
Boundary conditions	Closed boundaries

Spectral wave model calibration was not performed. Model parameters were adopted following experience gained from other modelling studies carried out by the project team in similar environments.

Figure 2-10 through Figure 2-12 show examples of MIKE 21 SW model results for winds propagating from NNE, SE and ENE respectively, for a constant water level = +3.31 m CGVD2013, corresponding to SLR in year-2018. As shown in Table 2-2, 200-year winds from SE are significantly stronger than winds from NNE and ENE, which explain the higher waves in Figure 2-12 compared to results in the other two figures. Wave directions are defined as 'propagating from', similarly to wind directions.

Figure 2-10 Wind-wave field calculated by MIKE 21 SW for 200-year wind from NNE

Figure 2-11 Wind-wave field calculated by MIKE 21 SW for 200-year wind from SE

Figure 2-12 Wind-wave field calculated by MIKE 21 SW for 200-year wind from ENE

2.6 CALCULATION OF WAVE EFFECTS – SETUP AND RUNUP

Wave effects (wave setup and runup) were calculated at 41 transects along the coastline of Nanaimo. Location of the coastal transects is shown in Figure 2-13 below. The transects are, with the single exception of Transect 31, aligned perpendicularly to the local depth contours, which explains the change in orientation from transect to transect that can be observed in Figure 2-13.

Wave parameters (significant wave height H_{m0} , peak wave period T_p and mean wave direction MWD) were extracted from the MIKE 21 SW model results at the starting point of each transect (transects are as shown in Figure 2-13) for each of the 27 combinations of nine wind directions (NW, NNW, N, NNE, NE, ENE, E, ESE and SE) and three initial water levels (+3.31 m CGVD2013 for year 2018, +3.57 m CGVD2013 for year 2050 and +3.98 m CGVD2013 for year 2100) that were used for the hindcast of local wind-waves.

Likewise, the maximum value of local storm surge calculated by the hydrodynamic model MIKE 21 HD FM along each transect was extracted for each of the three SLR horizons considered, see Figure 2-7 through Figure 2-9 for additional reference.

The extracted wave parameters and water levels were used as input for the calculation of wave setup and runup using the parametric DIM model developed by Dr. Robert Dean for FEMA (2005). As described in FEMA (2005), the static setup component, η , and root-mean-square of the dynamic setup component, η_{rms} , can be determined using the DIM equations:

Figure 2-13 Coastal Transects Used for The Calculation Of Wave Effects

$$\eta = 4.0F_{\rm H}F_{\rm T}F_{\rm Gamma}F_{\rm Slope}$$
(3)

$$\eta_{\rm rms} = 2.7 G_{\rm H} G_{\rm T} G_{\rm Gamma} G_{\rm Slope} \tag{4}$$

where the units of η and η_{rms} are in feet and the factors are for wave height (F_H and G_H), wave period (F_T and G_T), JONSWAP spectrum narrowness factor (F_{Gamma} and G_{Gamma}), and nearshore slope (F_{Slope} and G_{Slope}). These factors are defined in Table 2-5 below. Except for the spectral narrowness factors, the F and G factors are the same.

 Table 2-5

 Summary of Factors to be Applied with DIM (from FEMA, 2005)

Variable	Wave Height	Wave Period	Spectral Narrowness	Nearshore Profile Slope
η	(H ₀ /26.2) ^{0.8}	(Tp/20) ^{0.4}	1.0	(m/0.01) ^{0.2}
η _{rms}	(H ₀ /26.2) ^{0.8}	(T _p /20) ^{0.4}	(Gamma) ^{0.16}	(m/0.01) ^{0.2}

According to the description of the DIM method in FEMA (2005), incident wave runup on beaches can be calculated as:

$$\sigma_2 = 0.3\xi_0 H_0 \tag{5}$$

Where ξ_0 is Iribarren's number.

and

The total oscillating wave runup (listed as 'Wave runup' in the tables in Appendices A through C) is then calculated as:

$$\hat{\eta}_{\rm T} = 2\sqrt{\eta_{\rm rms}^2 + \sigma_2^2} \tag{6}$$

Input to the DIM model consists of average beach slope m between the breaker line and the upper limit of wave runup, peak wave period T_p , spectral peakedness factor *Gamma* and deep-water equivalent wave height H₀. T_p was obtained directly from the MIKE 21 SW results, m from the transect geometry and H₀ was calculated by de-shoaling to deep water the significant wave height H_{m0} extracted from the MIKE 21 SW results. Finally, a value of Gamma = 3.3 was adopted for the spectral peakedness factor; this value is consistent with a JONSWAP spectrum for a developing wave field.

When de-shoaling the waves, a still water level (SWL) defined as:

was used in all cases.

The approach described above resulted in (at most) nine values of wave setup and runup for each of the 41 transects. Waves associated with wind directions that would propagate away from the coast were

discarded form the analysis. The maximum wave effect (setup and runup) calculated at every transect from all applicable wind directions was adopted for the derivation of FCLs for the three SLR scenarios. Additional details about the calculation of wave effects can be found in Appendices A through C for years 2018, 2050 and 2100, respectively.

2.7 DERIVATION OF FLOOD CONSTRUCTION LEVEL

In agreement with Equation (1), wave effects together with a nominal freeboard level = 0.6 m must be added to already available components to calculate the FCL and to delineate FCL elevations for the three SLR scenarios considered in the present analyses. This approach was followed for most transects; however, transects 03, 04, 19, 20, 30, 35 and 38 were treated differently.

Transect 19 is sheltered by a low-lying island where waves break for all three scenarios (Year 2018, 2050 and 2100), since the associated SWL does not submerge the highest point of the island. Therefore, wave effects at the mainland shoreline were assumed to be zero.

In transects 03, 04, 20, 30, 35 and 38, waves do not break on the upper backshore, but rather on a relatively low foreshore that is backed by a berm. In this case, wave runup in the classic sense of the term (as shown in Figure 2-1) will not occur; rather, waves will propagate over the berm until they dissipate before reaching the backshore. In these cases, FCL was calculated as either the height of the berm or the foreshore plus the freeboard, or as the sum of SWL plus static wave setup plus freeboard, whichever was highest. For example, for Transect 20, the sum of the height of the berm (+4.81 m CGVD2013) plus freeboard (0.60m) was larger than the addition of static wave setup plus freeboard for all three time horizons, which results in a FCL = +5.41 m CGVD2013 for years 2018, 2050 and 2100.

Results have been summarized in Table 2-6 through Table 2-8 for years 2018, 2050 and 2100, respectively. Note that the values in the 'Wave Effects' column for transects 03, 04, 20, 30, 35 and 38 have been back-calculated from the FCL values determined as discussed in the previous paragraph.

It can be seen from the tables that the wave effect is quite large for some of the coastal transects. This is typically the case for transects backed by a steep bluff or cliff and exposed to large waves, for which the wave runup significantly contributes to the total wave effect. The method by which FCLs have been mapped is discussed in Section 2.8.

Transect	Year	HHWLT (m CGVD2013)	Deep Water Surge (m)	Sea Level Rise (m)	Regional adjustment (m)	Local Storm Surge (m)	SWL (m CGVD2013)	Wave Effects (m)	Freeboard (m)	FCL (m CGVD2013)
Nanaimo Coastline										
01	2018	2.02	1.25	0.06	-0.02	0.20	3.51	1.57	0.60	5.68
02	2018	2.02	1.25	0.06	-0.02	0.21	3.52	1.52	0.60	5.65
03	2018	2.02	1.25	0.06	-0.02	0.20	3.51	1.16	0.60	5.27
04	2018	2.02	1.25	0.06	-0.02	0.20	3.51	1.22	0.60	5.33
05	2018	2.02	1.25	0.06	-0.02	0.19	3.50	1.04	0.60	5.14
06	2018	2.02	1.25	0.06	-0.02	0.17	3.48	1.39	0.60	5.47
07	2018	2.02	1.25	0.06	-0.02	0.17	3.48	1.05	0.60	5.14
08	2018	2.02	1.25	0.06	-0.02	0.17	3.48	1.28	0.60	5.37
09	2018	2.02	1.25	0.06	-0.02	0.18	3.49	1.41	0.60	5.51
10	2018	2.02	1.25	0.06	-0.02	0.16	3.47	1.79	0.60	5.86
11	2018	2.02	1.25	0.06	-0.02	0.18	3.49	3.67	0.60	7.77
12	2018	2.02	1.25	0.06	-0.02	0.16	3.47	1.50	0.60	5.57
13	2018	2.02	1.25	0.06	-0.02	0.17	3.48	2.27	0.60	6.35
14	2018	2.02	1.25	0.06	-0.02	0.18	3.49	1.96	0.60	6.05
15	2018	2.02	1.25	0.06	-0.02	0.17	3.48	2.42	0.60	6.50
16	2018	2.02	1.25	0.06	-0.02	0.18	3.49	2.05	0.60	6.14
17	2018	2.02	1.25	0.06	-0.02	0.19	3.50	2.62	0.60	6.73
18a	2018	2.02	1.25	0.06	-0.02	0.21	3.52	1.26	0.60	5.38
18b	2018	2.02	1.25	0.06	-0.02	0.20	3.51	1.41	0.60	5.52
19	2018	2.02	1.25	0.06	-0.02	0.22	3.53	0.00	0.60	4.13
20	2018	2.02	1.25	0.06	-0.02	0.23	3.54	1.27	0.60	5.41
21	2018	2.02	1.25	0.06	-0.02	0.22	3.53	1.19	0.60	5.32
22	2018	2.02	1.25	0.06	-0.02	0.21	3.52	2.56	0.60	6.68
					Newcastle Is	sland				
23	2018	2.02	1.25	0.06	-0.02	0.21	3.52	1.78	0.60	5.91

Table 2-6 Calculated FCLs for SLR Scenario 2018

Transect	Year	HHWLT (m CGVD2013)	Deep Water Surge (m)	Sea Level Rise (m)	Regional adjustment (m)	Local Storm Surge (m)	SWL (m CGVD2013)	Wave Effects (m)	Freeboard (m)	FCL (m CGVD2013)
24	2018	2.02	1.25	0.06	-0.02	0.19	3.50	1.27	0.60	5.37
25	2018	2.02	1.25	0.06	-0.02	0.20	3.51	1.51	0.60	5.62
					Protection Is	sland				
26	2018	2.02	1.25	0.06	-0.02	0.19	3.50	1.18	0.60	5.29
27	2018	2.02	1.25	0.06	-0.02	0.19	3.50	1.16	0.60	5.27
					Nanaimo Coa	astline				
28	2018	2.02	1.25	0.06	-0.02	0.22	3.53	0.82	0.60	4.95
29	2018	2.02	1.25	0.06	-0.02	0.20	3.51	0.55	0.60	4.66
30	2018	2.02	1.25	0.06	-0.02	0.19	3.50	0.54	0.60	4.64
31	2018	2.02	1.25	0.06	-0.02	0.16	3.47	1.07	0.60	5.14
32	2018	2.02	1.25	0.06	-0.02	0.18	3.49	1.20	0.60	5.30
33	2018	2.02	1.25	0.06	-0.02	0.19	3.50	1.39	0.60	5.50
34	2018	2.02	1.25	0.06	-0.02	0.18	3.49	1.47	0.60	5.56
35	2018	2.02	1.25	0.06	-0.02	0.18	3.49	1.11	0.60	5.20
36	2018	2.02	1.25	0.06	-0.02	0.17	3.48	1.08	0.60	5.16
37	2018	2.02	1.25	0.06	-0.02	0.17	3.48	0.77	0.60	4.86
38	2018	2.02	1.25	0.06	-0.02	0.18	3.49	0.64	0.60	4.73
39	2018	2.02	1.25	0.06	-0.02	0.21	3.52	0.28	0.60	4.40
40	2018	2.02	1.25	0.06	-0.02	0.26	3.57	0.51	0.60	4.68

Transect	Year	HHWLT (m CGVD2013)	Deep Water Surge (m)	Sea Level Rise (m)	Regional adjustment (m)	Local Storm Surge (m)	SWL (m CGVD2013)	Wave Effects (m)	Freeboard (m)	FCL (m CGVD2013)
Nanaimo Coastline										
01	2050	2.02	1.25	0.38	-0.08	0.20	3.77	1.57	0.60	5.94
02	2050	2.02	1.25	0.38	-0.08	0.21	3.78	1.52	0.60	5.90
03	2050	2.02	1.25	0.38	-0.08	0.20	3.77	0.90	0.60	5.27
04	2050	2.02	1.25	0.38	-0.08	0.20	3.77	1.00	0.60	5.37
05	2050	2.02	1.25	0.38	-0.08	0.19	3.76	1.06	0.60	5.42
06	2050	2.02	1.25	0.38	-0.08	0.17	3.74	1.40	0.60	5.74
07	2050	2.02	1.25	0.38	-0.08	0.17	3.74	1.06	0.60	5.40
08	2050	2.02	1.25	0.38	-0.08	0.17	3.74	1.29	0.60	5.63
09	2050	2.02	1.25	0.38	-0.08	0.18	3.75	1.43	0.60	5.78
10	2050	2.02	1.25	0.38	-0.08	0.16	3.73	1.81	0.60	6.14
11	2050	2.02	1.25	0.38	-0.08	0.18	3.75	3.74	0.60	8.09
12	2050	2.02	1.25	0.38	-0.08	0.17	3.74	1.51	0.60	5.85
13	2050	2.02	1.25	0.38	-0.08	0.18	3.75	2.30	0.60	6.65
14	2050	2.02	1.25	0.38	-0.08	0.19	3.76	1.97	0.60	6.33
15	2050	2.02	1.25	0.38	-0.08	0.18	3.75	2.44	0.60	6.79
16	2050	2.02	1.25	0.38	-0.08	0.19	3.76	2.06	0.60	6.42
17	2050	2.02	1.25	0.38	-0.08	0.19	3.76	2.63	0.60	6.99
18a	2050	2.02	1.25	0.38	-0.08	0.21	3.78	1.25	0.60	5.63
18b	2050	2.02	1.25	0.38	-0.08	0.20	3.77	1.40	0.60	5.77
19	2050	2.02	1.25	0.38	-0.08	0.22	3.79	0.00	0.60	4.39
20	2050	2.02	1.25	0.38	-0.08	0.23	3.80	1.01	0.60	5.41
21	2050	2.02	1.25	0.38	-0.08	0.22	3.79	1.19	0.60	5.59

Table 2-7 Calculated FCLs for SLR scenario 2050

Transect	Year	HHWLT (m CGVD2013)	Deep Water Surge (m)	Sea Level Rise (m)	Regional adjustment (m)	Local Storm Surge (m)	SWL (m CGVD2013)	Wave Effects (m)	Freeboard (m)	FCL (m CGVD2013)
22	2050	2.02	1.25	0.38	-0.08	0.21	3.78	2.62	0.60	7.00
					Newcastle I	sland				
23	2050	2.02	1.25	0.38	-0.08	0.21	3.78	1.81	0.60	6.19
24	2050	2.02	1.25	0.38	-0.08	0.20	3.77	1.37	0.60	5.74
25	2050	2.02	1.25	0.38	-0.08	0.20	3.77	1.51	0.60	5.88
					Protection I	sland				
26	2050	2.02	1.25	0.38	-0.08	0.19	3.76	1.19	0.60	5.55
27	2050	2.02	1.25	0.38	-0.08	0.20	3.77	1.16	0.60	5.53
					Nanaimo Co	astline				
28	2050	2.02	1.25	0.38	-0.08	0.23	3.80	0.82	0.60	5.22
29	2050	2.02	1.25	0.38	-0.08	0.24	3.81	0.54	0.60	4.95
30	2050	2.02	1.25	0.38	-0.08	0.19	3.76	0.46	0.60	4.82
31	2050	2.02	1.25	0.38	-0.08	0.16	3.73	1.04	0.60	5.37
32	2050	2.02	1.25	0.38	-0.08	0.18	3.75	1.21	0.60	5.56
33	2050	2.02	1.25	0.38	-0.08	0.19	3.76	1.50	0.60	5.86
34	2050	2.02	1.25	0.38	-0.08	0.18	3.75	1.48	0.60	5.83
35	2050	2.02	1.25	0.38	-0.08	0.18	3.75	1.08	0.60	5.43
36	2050	2.02	1.25	0.38	-0.08	0.18	3.75	1.08	0.60	5.43
37	2050	2.02	1.25	0.38	-0.08	0.18	3.75	0.87	0.60	5.22
38	2050	2.02	1.25	0.38	-0.08	0.18	3.75	0.38	0.60	4.73
39	2050	2.02	1.25	0.38	-0.08	0.19	3.76	0.28	0.60	4.64
40	2050	2.02	1.25	0.38	-0.08	0.26	3.83	0.51	0.60	4.94

Transect	Year	HHWLT (m CGVD2013)	Deep Water Surge (m)	Sea Level Rise (m)	Regional adjustment (m)	Local Storm Surge (m)	SWL (m CGVD2013)	Wave Effects (m)	Freeboard (m)	FCL (m CGVD2013)
					Nanaimo C	Coastline				
01	2100	2.02	1.25	0.88	-0.17	0.20	4.18	1.57	0.60	6.35
02	2100	2.02	1.25	0.88	-0.17	0.22	4.20	1.51	0.60	6.31
03	2100	2.02	1.25	0.88	-0.17	0.21	4.19	0.49	0.60	5.28
04	2100	2.02	1.25	0.88	-0.17	0.20	4.18	0.59	0.60	5.37
05	2100	2.02	1.25	0.88	-0.17	0.20	4.18	1.10	0.60	5.88
06	2100	2.02	1.25	0.88	-0.17	0.18	4.16	1.41	0.60	6.17
07	2100	2.02	1.25	0.88	-0.17	0.17	4.15	1.09	0.60	5.84
08	2100	2.02	1.25	0.88	-0.17	0.18	4.16	1.29	0.60	6.05
09	2100	2.02	1.25	0.88	-0.17	0.19	4.17	1.45	0.60	6.22
10	2100	2.02	1.25	0.88	-0.17	0.16	4.14	1.86	0.60	6.60
11	2100	2.02	1.25	0.88	-0.17	0.19	4.17	3.83	0.60	8.60
12	2100	2.02	1.25	0.88	-0.17	0.17	4.15	1.53	0.60	6.28
13	2100	2.02	1.25	0.88	-0.17	0.18	4.16	2.26	0.60	7.02
14	2100	2.02	1.25	0.88	-0.17	0.19	4.17	2.00	0.60	6.77
15	2100	2.02	1.25	0.88	-0.17	0.18	4.16	2.48	0.60	7.24
16	2100	2.02	1.25	0.88	-0.17	0.20	4.18	2.08	0.60	6.86
17	2100	2.02	1.25	0.88	-0.17	0.20	4.18	2.63	0.60	7.41
18a	2100	2.02	1.25	0.88	-0.17	0.22	4.20	1.24	0.60	6.04
18b	2100	2.02	1.25	0.88	-0.17	0.21	4.19	1.38	0.60	6.17

Table 2-8 Calculated FCLs for SLR scenario 2100

Transect	Year	HHWLT (m CGVD2013)	Deep Water Surge (m)	Sea Level Rise (m)	Regional adjustment (m)	Local Storm Surge (m)	SWL (m CGVD2013)	Wave Effects (m)	Freeboard (m)	FCL (m CGVD2013)
19	2100	2.02	1.25	0.88	-0.17	0.23	4.21	0.00	0.60	4.81
20	2100	2.02	1.25	0.88	-0.17	0.24	4.22	0.59	0.60	5.41
21	2100	2.02	1.25	0.88	-0.17	0.23	4.21	1.20	0.60	6.01
22	2100	2.02	1.25	0.88	-0.17	0.22	4.20	3.30	0.60	8.10
					Newcastle	e Island				
23	2100	2.02	1.25	0.88	-0.17	0.22	4.20	2.29	0.60	7.09
24	2100	2.02	1.25	0.88	-0.17	0.20	4.18	1.41	0.60	6.19
25	2100	2.02	1.25	0.88	-0.17	0.21	4.19	1.53	0.60	6.32
					Protectior	n Island				
26	2100	2.02	1.25	0.88	-0.17	0.20	4.18	1.21	0.60	5.99
27	2100	2.02	1.25	0.88	-0.17	0.20	4.18	1.13	0.60	5.91
					Nanaimo C	Coastline				
28	2100	2.02	1.25	0.88	-0.17	0.23	4.21	0.81	0.60	5.62
29	2100	2.02	1.25	0.88	-0.17	0.24	4.22	0.55	0.60	5.37
30	2100	2.02	1.25	0.88	-0.17	0.19	4.17	0.29	0.60	5.06
31	2100	2.02	1.25	0.88	-0.17	0.16	4.14	1.06	0.60	5.80
32	2100	2.02	1.25	0.88	-0.17	0.19	4.17	1.23	0.60	6.00
33	2100	2.02	1.25	0.88	-0.17	0.20	4.18	1.83	0.60	6.61
34	2100	2.02	1.25	0.88	-0.17	0.19	4.17	1.49	0.60	6.26
35	2100	2.02	1.25	0.88	-0.17	0.19	4.17	0.66	0.60	5.43
36	2100	2.02	1.25	0.88	-0.17	0.19	4.17	1.09	0.60	5.86

Transect	Year	HHWLT (m CGVD2013)	Deep Water Surge (m)	Sea Level Rise (m)	Regional adjustment (m)	Local Storm Surge (m)	SWL (m CGVD2013)	Wave Effects (m)	Freeboard (m)	FCL (m CGVD2013)
37	2100	2.02	1.25	0.88	-0.17	0.19	4.17	0.99	0.60	5.76
38	2100	2.02	1.25	0.88	-0.17	0.19	4.17	0.40	0.60	5.17
39	2100	2.02	1.25	0.88	-0.17	0.16	4.14	0.30	0.60	5.04
40	2100	2.02	1.25	0.88	-0.17	0.25	4.23	0.51	0.60	5.34

2.8 FLOOD CONSTRUCTION LEVEL MAPPING PROCEDURE

As is evident from the FCL results presented in Tables 2-6 to 2-8, there is a significant difference between transects across the study area. The SWL is generally consistent, with the majority of difference being accounted for by the wave effects at each transect. This makes the task of plotting the FCL elevation/limit very challenging. To help visualise the change in FCLs between each adjacent transect, the following plots, Figures 2-14 to 2-16, were produced using the results summarised in Tables 2-6 to 2-8. They clearly demonstrate the consistency in SWL, whilst highlighting the differences in wave effects for adjacent transects. In particular, there are large jumps in wave effects, and subsequently in FCL, at transects 11, 22 and 33. These areas have near vertical shoreface slopes, with associated higher values of wave runup than if the coastline were gently sloping.

For the majority of the project coastline, the mapping methodology was as follows:

- FCLs were estimated at each transect, as per Tables 2-6 to 2-8.
- Lines were generated at the midpoints between each transect, as per the pink dashed lines ('FCL Boundaries'), in the appended FCL mapping.
- Each transect's FCL was plotted until it hit this 'boundary line', where the FCL elevation directly transitioned to the next transect's corresponding FCL.
- Therefore, this explains the 'stagger' in FCL lines for the same time horizon.

However, the project team have made some localised amendments to the above approach using experience and judgment. This was done where estimated FCLs would be considerably localised and not necessarily suitable for locations in the immediate vicinity. An example of this would be transect 22, where we have confined the FCL to the Departure Bay ferry terminal only. The FCL in the Newcastle Island Passage immediately transitions to the FCL applicable for transect 28. As stated, the vertical coastline at transect 22 was not deemed to be representative of that stretch as a whole.

The above procedure is similar to what has been done in previous studies by DHI for FEMA. The locations of the FCL reaches and their boundaries are shown in the appended mapping in Appendices D to F.

As the FCL values on both Newcastle Island and Protection Island do not vary greatly across their respective coastline, we have omitted these areas from Figures 2-14 to 2-16 for ease of display. These figures, therefore, only show the primary Nanaimo coastline.

Figure 2-14 Comparative Plot of Flood Construction Levels Along Nanaimo Coastline

Figure 2-15 Comparative Plot of Still Water Levels Along Nanaimo Coastline

37	
201	

Figure 2-16 Comparative Plot of Wave Effects Along Nanaimo Coastline

-		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		
7		

3 Erosion Analysis

3.1 OVERVIEW

As per Section 1, we have completed a strategic level erosion analysis for this project. The objective of this assessment was to establish a baseline from the existing coastline and subsequently estimate its future likely position in the years 2050 and 2100. This has been undertaken using two complementary methods as follows:

The first was a visual analytical procedure based on a **visual comparison** of the best available, current and historical mapping and aerial orthoimagery. The visual analysis procedure entailed the following steps:

- Data collection & processing
- Coastline classification
- Determination of retreat rate
- Mapping of calculated retreat

However, a key limitation to this method is that it could only be undertaken at a relatively few points along the coastline; the reasons for which are explained in detail in Section 3.2.3.

The second method was based on **numerical model simulations** of bed shear stresses for different flow conditions (tide + wind, tide + waves) using the hydrodynamic model from Section 2. This has led to the identification of hotspots along the coastline where more severe erosion over the long term can be expected.

The two methods and the corresponding results are presented in Sections 3.2 and 3.3. respectively, while Section 3.4 compares the two sets of results and provides the overall findings.

This erosion analysis will provide the City with valuable information for identifying potentially vulnerable areas; facilitating consideration by planners of the hazard and potential risks to proposed development near the coastline.

3.2 VISUAL ANALYTICAL PROCEDURE

3.2.1 Data Collection & Processing

The first stage of the visual assessment involved collecting the appropriate data necessary for this strategic-level assessment. As previously discussed, the City provided historic, georeferenced, digital orthoimagery (both colour and monochromatic) for a number of years dating back to 1996. In addition to the digital datasets, the project team were also supplied with hardcopy aerial photos, at varying scales, that

predated some of the digital files. A digital outline of the City coastline was obtained from iMapBC's¹⁷ Freshwater Atlas open-data and amended locally at points where the line deviated from orthoimagery.

In support of this project, Nanaimo Port Authority was kind enough to offer an opportunity to tour the coastline by boat. A member of AE's project team was able to visually survey the study's coastline and collect invaluable photographic evidence on September 6th 2018. This survey has allowed the project team to more accurately assess the coastline condition and classify reaches as per Section 3.2.2.

3.2.2 Coastline Classification

The subsequent stage of the assessment involved classifying the coastline of the study area, as shown in Figure 3-1. This was done to provide an indication of the areas where it was either not possible to quantify the erosion rate or where the erosion rates derived may have been affected by the presence of coastal protection works.

¹⁷ https://maps.gov.bc.ca/ess/hm/imap4m/

Figure 3-1 Coastline Classification Map

As per Figure 3-1, the coastline was sub-divided into the following classes:

- Man-made coastline, where the coastline is artificial or has been heavily modified (e.g. man-made structures, harbours, quays, promenades etc.).
- Rocky, where bedrock with little or no overburden forms the coastline.
- Natural Sedimentary, where there is a 'typical' beach or 'soft' coastline.
- Sedimentary with Defences, where there is a soft coastline but has some defences (e.g. beach with a sea-wall).

This classification was based on a visual review of the aerial imagery and digitized coastline. The review was qualitative in nature and assumptions and simplifications have been made due to the strategic nature of this assessment.

3.2.3 Determination of Retreat Rate

After the coastline had been appropriately classified, erosion analysis transects were generated at 500m spacing. The analysis then focused on transects where the historic, visible vegetation line could actually be discerned from the aerial imagery, as shown below in Figure 3-2. For the purposes of our analysis, we selected the 1996 monochromatic imagery dataset as our historical benchmark. Present-day (contemporary) imagery was supplied by both the City's ortho dataset and ESRI's World Imagery for 2016¹⁸. Upon review of the aerial imagery for the entire coastline, it was found that only 8 transects had suitably discernable vegetation lines from historic imagery, and whose locations are shown in Figure 3-1. Only 8 transects were selected for the following reasons:

- In many locations, no discernable coastal retreat could be identified i.e. no coastal erosion over that period. This was particularly obvious in man-made areas and rocky bluff locations.
- Due to the nature of some locations, any potential coastal retreat could not be made out due to the heavily vegetated nature of the coastline. Unfortunately, this was a complicating factor when looking at the North Slope area. The majority of the coastline boundary at this location is obscured by the tree canopy, and as such, casts a shadow or completely hides any potential retreat.
- Finally, the age and resolution of the data made it difficult to pick out retreat, particularly if the retreat was less than a few metres. The spatial resolution of the 1996 dataset seems to be 25cm, which means there is a separate pixel for each 25cm x 25cm area in the captured ortho imagery. However, this means that a 1m retreat in coastline between 1996 and 2016 equates to just 4 single pixels on the orthoimagery. It is extremely difficult, therefore, to pick out such a retreat at an enhanced scale, unless there is a distinct colour change to signify change in material, as shown in Figure 3-2.

At each of the transect locations, digital markers were placed at the visible vegetation line for both the historic and contemporary benchmarks, as shown in Figure 3-2. The distance of retreat was then measured between the two markers and then converted to an annualised erosion rate (m/yr), by dividing by

¹⁸ Esri World Imagery, taken on Thu January 14th 2016. Ground resolution is 0.05 m.

the time elapsed. This annualised erosion rate was then used to 'project' the retreat distances for both the 2050 and 2100 time horizons, as per Table 3-1.

Figure 3-2 Example of Coastal Erosion

	Table 3-1	
Results from V	Visual Inspection of Hi	istoric Coastal Retreat

Analysis Location	Chainage (m)	Contemporary Benchmark	Historic Benchmark	Retreat Distance (m)	Annualised Erosion Rate (m/yr)	2050 Retreat Distance (m)	2100 Retreat Distance (m)
01	28+100	2016	1996	9.44	0.47	16.05	39.65
02	28+400	2016	1996	2.90	0.15	4.93	12.18
03	37+750	2016	1996	1.89	0.10	3.23	7.98
04	38+250	2016	1996	0.73	0.04	1.26	3.11
05	39+250	2016	1996	1.04	0.05	1.77	4.37
06	7+950	2016	1996	3.08	0.15	5.24	12.94
07	Protection Island	2016	1996	1.35	0.07	2.31	5.71
08	17+250	2016	2003	1.02	0.08	2.65	6.55
Indicative (aver					0.09	3.06	7.55

Existing literature has estimated that retreat rates for cliffs in the Nanaimo Lowlands can be in excess of 0.3 m per annum¹⁹. However, this erosion is balanced by local accretion of coastal landforms, thus the coastline has been historically classified as 'stable'. As such, the results shown in Table 3-1 are thought to be reasonable for a coastal environment on the eastern side of Vancouver Island, and are in-keeping with the 'stable' coastline description. As already discussed, it was difficult to include the North Slope area due to the resolution of the photography and the tree canopy obscuring the actual vegetation/beach interface. Therefore, the results have not been skewed by the significant erosion experienced in recent years at that location, which may not have been all potentially, directly attributable to coastal (wave) actions.

There is one outlier, however, at marker 01 (study chainage 28+100 m). This is the example given in Figure 3-2. It is evident that there was significant erosion over the period of 20 years; a rate of erosion that does not seem to be indicative of the study area as a whole, as can be seen from Table 3-1. The marker's location is generally sheltered, relative to the more exposed areas of the study coastline. However, it is feasible that the erosion rate may have been influenced by human activities, as well as maintenance of a local access track. On this basis, we believed it prudent to omit this marker from the final indicative, annualised erosion rate. The **indicative annualised study erosion rate therefore becomes 0.09 m/yr**. This rate is indicative only, as is based on a limited number of points for the reasons already discussed. It is for information purposes and can help inform 'typical' retreat within the City. However, it should not be used for site-specific erosion analysis as the coastline morphology in the City is extremely varied, which would have a significant effect on actual retreat rates at that particular location.

3.2.4 Mapping of Calculated Retreat

Upon derivation of an indicative annualised retreat rate for the study area, the final step in the erosion analysis involved the mapping of retreat lines for both the 2050 and 2100 time horizons. The general mapping assumptions were as follows:

- It was assumed that the retreat would be uniform across the full length of the coastline, where 'soft' coastline existed.
- The calculated retreat values were as is estimated in Table 3-1.
- It was assumed that no retreat would occur in coastline areas classified as "Rocky" or "Man-made Coastline". However, there were local exceptions to this assumption where segments of 'softer' coastline existed e.g. Neck Point Park (study chainage 8+000 m). With regard to "Man-made Coastline", the project team have assumed that areas such as the port shoreline and Departure Bay ferry terminal will be continually maintained and appropriately protected.
- It was found when mapping the appropriate retreat rates in GIS software, that it was very difficult to distinguish between retreat lines and coastline when printed on a paper map, at an appropriate scale (1:5,000). Therefore, as the usefulness of paper maps would be very limited in this regard, the retreat lines will be supplied to the City in digital GIS format only.

¹⁹ Geological Survey of Canada Bulletin 505: Sensitivity of the Coasts of Canada to Sea Level Rise. 1998. J. Shaw, R.B. Taylor, D.L. Forbes, M.H. Ruz and S. Solomon.

3.3 EROSION MODELLING

As previously mentioned, numerical model simulations of bed shear stresses for different flow conditions (tide + wind, tide + waves) were carried out in support of the visual erosion review. The idea behind the modelling is to identify areas with high shear stress values, and to equate these to coastal erosion hotpots.

The model setups used in the analyses and the results obtained are presented and discussed in the following sections of this report.

3.3.1 Technical Approach

Two different simulation periods were adopted for the calculation of bed shear stresses using the hydrodynamic model MIKE 21 HD FM:

- An approximately 6-week long period in June-July 2017 with large tidal amplitudes, especially during spring tide, and,
- A four-day period in early April 2010 in which strong winds and high waves occurred.

The idea behind the selected simulation periods was to identify erosional hotspots under strong tidal flow and wave dominated situations, respectively.

Figure 3-3 shows water levels recorded at Nanaimo during the first simulation period, which extends from June 16 through July 31, 2017. The large tidal amplitude during the spring tide cycles at the beginning and end of the simulation period can be clearly seen from the figure.

Figure 3-4 shows water levels recorded at Campbell River, BC (water level records from Nanaimo do not exist for this period) as well as wind speed and direction and wave height recorded at EC buoy c46146 Halibut Bank.

During the June-July 2017 simulation period, the hydrodynamic model MIKE 21 HD FM was forced by tide; and winds and bed shear stresses were computed for the resulting flow conditions.

Meanwhile, a coupled model consisting of MIKE 21 SW and MIKE 21 HD FM was used to simulate windwave generation, tidal flow and to compute the bed shear stresses under combined waves and current, thus accounting for the influence of waves on increasing bed shear stresses compared to the situation without waves. To further highlight this effect, this simulation was repeated without waves.

Model results are presented and discussed in the next section of this report.

Figure 3-3 Time Series of Water Levels Recorded at Nanaimo in June-July 2017

Figure 3-4 Time series of water levels recorded at Campbell River (top), wind speed and wave height from Halibut Bank (centre) and wind direction (bottom) from Halibut Bank in early April 2010

3-9

3.3.2 Modelling Results

Figure 3-5 shows the maximum bed shear stresses calculated by the hydrodynamic model under tidal flow and wind forcing conditions during the period June-July 2017.

Figure 3-5 Maximum bed shear stresses during simulation period in June-July 2017

Hotspots for erosion would correspond to areas shown in 'warm' colours, such as yellow, orange and red/brown. Areas of high bed shear stress occur not only in areas of flow constriction, such as narrow channels, but also at several locations along the shoreline of Nanaimo, including Departure Bay.

Figure 3-6 shows similar results for the four-day period in April 2010 for the combined action of waves and tidal flow. Figure 3-7 shows results for the same simulation period but excluding the contribution of the waves to the bed shear stresses. Results in both figures are qualitatively similar. Inclusion of wave effects seems to make the maximum bed shear stresses larger than in the case of tidal flow only, and a few additional erosion hotspots can be seen for the case when waves are included in the analysis.

Results in Figure 3-5 and Figure 3-6 are also similar, qualitatively speaking, which could, to some extent, be expected since both figures show results for hydrodynamic conditions dominated by tidal flow.

Figure 3-6 Maximum bed shear stresses during four-day simulation period in April 2010. Combined tide and waves

Figure 3-7 Maximum bed shear stresses during four-day simulation period in April 2010. Tide only

3.4 EROSION ANALYSIS FINDINGS

It is clear from both the visual analysis and the hydrodynamic "hotspot" modelling that there are some pockets/areas of the City's coastline at risk from sustained coastal erosion. It is interesting to note that many of the visual analysis points, as listed in Table 3-1, overlap with 'warm-colour' regions flagged in the hydrodynamic model as erosion hotspots. Specifically, Neck Point Park (study chainage 8+000 m), Departure Bay Rd. (study chainage 17+250 m) and the Nanaimo River Estuary (study chainage 37+000 m) are all areas of general correlation between the two approaches.

It is unfortunate that the visual analysis was unable to properly discern the retreat at the North Slope area, as detailed in Section 3.2.3. Of all the coastline areas in the study boundary, it has been the location continuously flagged by City representatives as a concern. The results of the hydrodynamic hotspot modelling reinforce this, as shown in Figure 3-6. It is evident that the combined action of wave and tide has sufficient energy to mobilise bed loads and cause geomorphological change. It must be stressed again however, that coastal action at the North Slope is most likely not the sole cause of failure. But rather, failures can be caused by a combination of factors including slope steepness/instability, excessive rainfall and coastal action. Further work in relation to the North Slope will be discussed in greater detail in Section 5.5.

In summary, the results have shown that the study coastline is relatively quite stable; in agreement with the published literature. Many areas of the coastline experience little or no erosion; with much of the losses

being balanced by accretion in other adjacent locations. The areas which would most likely see the most noticeable geomorphological change in the coming years due to rising sea levels would be the North Slope and the Nanaimo River Estuary. Again, this conclusion is reinforced by the results from the hydrodynamic model.

4 Sea Level Rise Risk Assessment

As part of this project, a strategic-level assessment of potential impacts of sea level rise in the study area was undertaken. To help with this assessment, the project team downloaded a number of digital GIS datasets from the City's website for specific locations or 'risk receptors' in the study area. 'Risk receptors' are public or private assets that could be negatively impacted by rising sea levels. For the purposes of this assessment, the project team has concentrated on the following 'risk-receptors':

- Local buildings and properties (lots).
- City of Nanaimo drainage infrastructure.
- City of Nanaimo sanitary infrastructure.

It is must be stressed again at this juncture that the flood construction levels generated in this study, and subsequently used for risk assessment, are not inundation extents. They may not give a true reflection of the expected extent or depth of flooding at that particular location for a respective event. However, as this is a strategic-level assessment, the FCLs as estimated have been deemed appropriate for use.

The general approach for this SLR risk assessment was to simply quantify the number of risk receptors located below the plotted water level elevation and examine depths as and when it was necessary. The project team decided to use the more conservative FCL elevation, rather than the Still Water Level as it accounted for freeboard, as well as wave contributions.

4.1 ASSESSMENT RESULTS

4.1.1 Risk to Buildings & Lots

Risk to buildings and lots was determined by including any areas that were contained below the FCL elevation, as well as those encroached upon i.e. if a lot/building boundary was touched, it was included in this assessment. The results of this GIS exercise are presented in Table 4-1 below.

Time Horizon	No. of Buildings within FCL limit		No. of Lots within FCL limit	
2018 (Present Day)	Residential:	125	Bare Land Strata	21
	Industrial:	57	Parcel	673
	Commercial:	12	Strata	41
	Apartment:	9	Strata Lot	9
	General:	6		
	Institutional:	6		
	Multifamily:	7		
	Office:	7		
	Gas Station	2		
	Total	231		

Table 4-1 Risk to Buildings & Lots

Time Horizon	No. of Buildings within FCL limit		No. of Lots within FCL limit	
2050	Residential: Industrial: Commercial: Apartment: General: Institutional: Multifamily: Office: Gas Station	133 62 12 10 6 6 7 8 2	Bare Land Strata Parcel Strata Strata Lot	23 683 42 9
	Total:	247		
2100	Residential: Industrial: Commercial: Apartment: General: Institutional: Multifamily: Office: Gas Station	157 67 12 10 6 6 8 8 8 2	Bare Land Strata Parcel Strata Strata Lot	23 721 42 9
	Total:	277		

As is evident from Table 4-1, there is very little change in no. of lots/buildings affected between each time horizon. This is a function of the relative steepness of the Nanaimo coastline. Despite noticeable gains in flood construction levels at each transect between each time horizon, the majority of the coastline is steep enough so that the only notable differences are evident in low-lying areas such as Departure Bay. However, it is also interesting to note that some of the contributions to the values shown in Table 4.1 come from Protection Island, particularly in the 2100 time-horizon.

In support of this analysis, a heatmap was generated to indicate the concentration of building vulnerability, in the year 2100, in the City of Nanaimo, as per Figure 4-1. Heatmaps are an effective visualisation tool for dense point data, as it allows the reader to easily identify clusters where there is a high concentration of the variable in question (i.e. buildings). The heatmap was generated in GIS software using a statistical process called 'kernel density estimation', which converts the point information into a raster dataset.

Figure 4-1 shows a dense cluster of properties affected around Departure Bay, which is to be expected due to its relatively low-lying nature. However, the greatest density of buildings affected tends to be on Protection Island. Much of the properties on the eastern side of the island tend to be relatively low-lying and could show increased vulnerability to rising sea levels in the near future.

Figure 4-1 Heatmap showing concentration of building vulnerability to 2100 FCL scenario

4.1.2 Risk to Drainage Infrastructure

Risk to drainage infrastructure was determined in a similar fashion to that of buildings/lots; any risk receptors located below the FCL elevation were selected. The results of this GIS operation are shown below, in Table 4-2.

Timo Horizon	No. d	of Storm Assets	within FCL Limit	
	Туре	Public	Private	Total
	Manhole	62	52	114
2018	Outlet	124	12	136
2010	Reducer	2	0	2
	Pipe (m)	7145	4118	11263
	Manhole	66	55	121
2050	Outlet	133	14	147
2030	Reducer	2	0	2
	Pipe (m)	7703	4362	12065
	Manhole	69	58	127
2100	Outlet	137	14	151
2100	Reducer	2	0	2
	Pipe (m)	8045	4747	12792

Table 4-2 Risk to Drainage Infrastructure

Like previous results, the bulk of risk to drainage infrastructure is concentrated around Departure Bay and its BC Ferries terminal. It reinforces the anecdotal evidence of flooding discussed in Section 1. A heatmap was also generated for the drainage infrastructure layer, as shown in Figure 4-2. It is interesting to note that drainage infrastructure along the Inner Harbour (study chainage 24+500 m) are also flagged as being potentially vulnerable.

Figure 4-2 Heatmap showing concentration of drainage infrastructure vulnerability to 2100 FCL scenario

4.1.3 Risk to Sanitary Infrastructure

The final set of risk receptors looked at, as part of this assessment, was sanitary infrastructure. As already detailed, we used GIS information downloaded from the City's website, specifically the "Appurtenances" dataset. The results of the analyses are presented in Table 4-3.

Time Herizon	No. of Sanitary A	ssets within	FCL Limit	
Time Horizon	Туре	Public	Private	Total
	Manhole	145	10	155
2019	Pump Station	5	3	8
2010	Gravity Pipe (m)	16440	851	17291
	Pressure Pipe (m)	1387	611	1998
	Manhole	150	10	160
2050	Pump Station	0	8	8
2030	Gravity Pipe (m)	17305	888	18193
	Pressure Pipe (m)	1415	649	2064
	Manhole	166	11	177
2100	Pump Station	0	9	9
2100	Gravity Pipe (m)	18132	936	19068
	Pressure Pipe (m)	1951	681	2632

Table 4-3 Risk to Sanitary Infrastructure

Again, the low-lying Departure Bay area is particularly effected. The accompanying heatmap, shown in Figure 4-3, better conveys the areas of vulnerability. The highest concentration of appurtenances affected tends seems to be in the Inner Harbour once more. Much of the infrastructure here is public manholes, which could experience floodwater ingress or complete removal if not properly sealed and locked. The manholes located within the FCL areas that require sealing would likely operate, on occasion, under a pressurised condition. Standard manholes are not designed for pressurised operation, and as a result, the modification or replacement of the manhole(s) may be required based on further analysis.

Notably, there are also several pump stations, both public and private, located below FCL elevations. These public pump stations are located at the following locations:

- Piper Crescent, City of Nanaimo, approximate project chainage Sta. 9+400.
- Departure Bay Pump Station (2936 Departure Bay Rd.), RDN, approximate project chainage Sta. 17+600.

- Vancouver Island Regional Library (Museum Way), City of Nanaimo, approximate project chainage 25+250.
- Promenade Drive, City of Nanaimo, approximate project chainage Sta. 25+400.

Figure 4-3 Heatmap showing concentration of sanitary infrastructure vulnerability to 2100 FCL scenario

- Chase River Pumping Station (1174 Island Highway South), RDN, approximate project chainage Sta. 31+200.
- Duke Point Highway, RDN, approximate project chainage Sta. 42+500

Also, worth noting, as can be seen in Figure 4-3, is that there is a reasonable concentration of sanitary infrastructure in easements that will be impacted on the North Slope area. This corresponds to the existing gravity pipeline. Vulnerability to rising sea levels and potential coastal retreat at this location is something that the City should be aware of for future planning.

4.2 RISK ASSESSMENT CONCLUSIONS

The risk assessment shows areas of vulnerability that are generally consistent with the locations flagged as having existing flood history and relatively low-lying. However, Protection Island, BC Ferries Departure Bay Terminal and the Nanaimo Inner Harbour are all locations where rising sea levels could have significant impacts on existing buildings, storm and sanitary infrastructure. As already mentioned in this report, further 2D modelling could help refine the FCL estimates at these locations (see Section 5.2), as well as give an enhanced understanding of flood depths and extents.

5 Options for Further Analysis

The following sections describe work-items that may offer additional value to the City and interested stakeholders. Some sections detail activities that could be undertaken to further **refine FCL estimates** and/or coastal inundation mapping. Many of the sections describe what the City could do to carry this work through to a **sea level rise/coastal flood risk management plan** and any subsequent protection works. This would be particularly relevant to the lower-lying private residences and businesses located around Departure Bay.

5.1 PROBABILISTIC CALCULATION OF SEA LEVEL RISE

The means by which the FCL is calculated using the Coastal Guidelines 2011, using a combined approach as shown in sections 2.1 and 2.2, is a conservative approach as it does not take into account the joint probability of the extreme of each component occurring simultaneously i.e. how likely is that the 0.5% AEP deep water storm surge, the 0.5% AEP wind speed, the HHWLT and the corresponding maximum wave heights all occur at the same time? If one were to undertake a joint probability analysis, it may be found that this 'combined approach' yields a much more remote probability than 0.5%.

Further detailed analyses on the joint probability of these components could be undertaken to derive a more refined 0.5% AEP FCL elevation.

5.2 REFINED INUNDATION MODELLING

As discussed in Section 2 of this report, the Flood Construction Levels have been projected inward from the coastline, until it hits or 'cuts' the same elevation in the study DTM (see Section 1.5.1). For the purposes of this strategic-level study, this is an appropriate approach to mapping. However, flood depths and extents, and consequently FCLs and FCL inundation limits, could be refined using 2D inundation modelling. We have not completed any 2D inundation modelling as part of this project. A 2D inundation model would essentially 'spill' tidal volumes and wave overtopping volumes onto the study DTM at the coastline boundary. Floodwater would then inundate the study area, gradually decreasing in momentum, until it reached its maximum extent. There are a number of reasons why 2D inundation modelling would improve upon this project's approach:

- Coastal flood events can occur over a number of tidal cycles i.e. there may be more than just one peak. The first high-tide may inundate an area, leaving ponded floodwater behind as the tide recedes. The next high-tide may be the actual 'peak', exacerbating any flood volumes already in an area as a result of the first high-tide. Such an occurrence can have noticeable impacts on storm drainage infrastructure and building basements for example. A 2D inundation model would account for these volumes and further refine depths and extents.
- The wave heights, as they have been estimated at each transect using detailed MIKE 21 SW modelling have been, for the most part, projected inland. In steep rocky bluff areas, this approach would not need any further refinement. In areas where waves have the opportunity to runup and overtop, 1D calculations could be undertaken to estimate overtopping volumes and use this as

another input into the aforementioned 2D inundation model. However, in areas where waves would have the opportunity to propagate from coastal waters and travel beyond the coastline, a separate 2D computational wave model could be constructed to simulate this wave inundation. An example of this would be at Departure Bay ferry terminal, where SWLs exceed coastline elevations, allowing waves to travel inward.

The project team are more than capable of undertaking the above work to help refine FCLs in targeted areas such as Departure Bay and the Inner Harbour. Much of the groundwork and detailed modelling of inputs has already been completed as part of this project. Therefore, we would be in an advantageous position to provide further detailed outputs in an efficient manner. We would be more than happy to discuss this with the City and interested stakeholders, as and if the need arises.

This additional assessment could also be used to produce detailed Floodplain maps.

5.3 ECONOMIC RISK ASSESSMENT

If the City and other stakeholders were interested in estimating the financial implication of rising sea levels to coastal infrastructure and properties, a quantitative economic risk assessment could be undertaken i.e. a "damages assessment". The damages could be derived from one of two different datasets:

- This study's FCL mapping, included in Appendices D-F, or,
- The results of the refined inundation modelling, as described in Section 5.2. (Both would require an inventory of GIS building attribute and location data.)

Using an input risk receptor such as "Buildings", "Drainage Infrastructure" etc. and automated GIS routines (e.g. FEMA HAZUS), the depth and extent of coastal inundation can be converted to a net present value (NPV) financial loss. The Annual Average Damage (AAD) for each individual risk receptor could then estimated using the NPV and a range of probabilities. This would be the cost number that the City or other stakeholders could use (via Cost-Benefit Analysis, explained in Section 5.4) to examine if SLR/inundation management measures are worth pursuing.

The calculation of the AAD would require additional coastal inundation analysis covering a range of storm frequencies ranging from the 10-year event to the 1000-year event.

5.4 SEA LEVEL RISE MANAGEMENT PLAN

Upon conclusion of the SLR Risk Assessment in Section 4, it was evident that the properties on Protection Island, Battersea Rd., Randle Rd. and parts of Departure Bay Rd. are vulnerable to rising coastal levels. The City may find it necessary to properly plan for and manage potential sea level rise at these locations in the coming years. A means by which this could be done is termed a "Sea Level Rise Management Plan" (SLRMP) or coastal Flood Risk Management Plan. The various input stages of a SLRMP are shown in Figure 5-1. The green boxes denote activities that the project team deem fundamental to the production of

an effective management plan. The blue boxes denote activities that, though strongly recommended, could be foregone as part of this work.

Figure 5-1 Stages of Sea Level Rise Management Plan

The various input stages of a SLRMP are explained in greater detail below:

Screening of Measures: Screening involves the assessment of possible methods to manage flood risk and identifying those which could be effective and potentially viable. For example, in a coastal environment, a tidal barrage could be screened out immediately if its construction challenges and cost are disproportionate to the area it is protecting. Examples of other measures that could be considered in a coastal environment include sea walls, rubble-mound breakwaters and retreat from affected areas.

Development and Testing of Potentially Viable Measures: This work-item uses the potentially effective measures identified at Screening and refines them for outline design. High-level cost estimates are developed for each potentially viable measure. Any potential measure whose implementation could impact on existing water levels should be tested in a hydraulic model so that a 'post-implementation' benchmark can be established to evaluate its relative performance e.g. an existing drainage outfall emptying to the sea can be a source of flooding during extreme tides. If a non-return valve is installed

on the drainage route, is there enough storage in the system upstream for flooding not to occur whilst tide levels are elevated (i.e. tide-locking)?

<u>Multi-Criteria Analysis (MCA)</u>: This could also be termed 'Triple-Bottom-Line' Analysis. Potential measures can be assessed and appraised using this analysis to determine their effectiveness in reducing flood risk, as well as their potential benefits, across a range of specific objectives. Criteria under which potential measures could be assessed include environmental performance, technical feasibility, economic impact and social performance.

<u>Cost-Benefit Analysis:</u> This assessment would take the results from the economic risk assessment, as detailed in Section 5.3, and compare them against the high-level cost of any proposed management measure. This would assign a 'cost-benefit ratio' (CBR) or financial score to each measure, allowing the City and other stakeholders to more easily see the most economically advantageous option.

<u>Public & Stakeholder Engagement:</u> During the development of the Sea Level Rise Management Plan, residents, local communities, elected officials and affected stakeholders should be consulted so that everyone's views and opinions can be gathered and taken onboard. This is extremely important in securing 'public buy-in' to a management plan and sometimes offers invaluable insight as to problems experienced on the ground.

<u>Identification of Preferred Sea Level Rise Management Option:</u> This is the selection of the preferred management measure for the local residents, businesses, community and other stakeholders; taking into account the holistic performance of the measures examined. If this measure requires construction of any kind (e.g. flood defence wall), the plan could then be carried through to detailed design and tendering stage.

The above offers an overview of what could be required if the City were to decide that protection of the Departure Bay and/or Protection Island areas, for example, is necessary. It is a roadmap by which a solution could be pursued and would result in the optimum sea level rise management method.

5.5 COASTAL EROSION MONITORING

Following on from the results shown in Section 3, it is evident that there are some locations in the study area sensitive to coastal erosion. In open areas such as the Nanaimo River Estuary, retreat can be monitored using aerial orthoimagery, so long as the resolution of the image is sufficient to properly pick out coastline movement. However, in an obscured area such as the North Slope, a different approach would be required.

One option would be to conduct a detailed survey of the area, as has been done previously, perhaps at a couple of key locations e.g. Sealand Park (study chainage 3+000 m). Benchmarks could be established at the slope-toe at a number of known points. This would be a process similar to the physical monitoring of glacial retreat. Through a combination of physical monitoring and subsequent surveying, a pattern of

retreat could be established. This would allow the City to prioritise remediation/maintenance efforts, as well as inform local residents.

REPORT

6 **Conclusions**

IMPLICATIONS OF THE RESULTS 6.1

6.1.1 Sea Level Rise

The results presented in Sections 2 and 4, as well as Appendices D to F, of this report have shown that, for the most part, the City of Nanaimo is not as vulnerable to rising sea levels as other areas of Vancouver Island and the Lower Mainland. Its location on elevated rocky bluffs affords it a degree of protection from sea level rise and is reinforced by the fact that any historical coastal flooding occurring in the jurisdiction tends to be concentrated in low-lying areas like Departure Bay.

Conversely, Departure Bay and portions of Downtown, Protection Island and Duke Point are seen to be vulnerable to rising sea levels, with swathes of land in these locations being below the corresponding FCL. Without detailed inundation modelling at each of these areas, it is difficult to state with relative certainty the degree to which they are affected. However, the SWL does encroach onto land in these areas for each time horizon, so it is not unreasonable to assume that coastal inundation events may occur more frequently in the foreseeable future.

6.1.2 **Coastal Erosion**

The results shown in Section 3 detail that coastal erosion tends to be an isolated and concentrated problem for the City's coastline. It tends to be focussed on areas with 'softer' coastline and high-energy wave/tidal environments. The North Slope area is a continuous concern for the City, however, the problems encountered here tend to be from a combination of different factors including coastal processes.

With regard to much of the rocky bluff areas of the City coastline, coastal erosion for the time horizons analysed in this report, would be of minor concern. We recommend that the City continues regular monitoring and inspection of the North Slope area, which could potentially incorporate periodic topographic surveying and measurement. It is also imperative to continue to commission aerial photography flights, at detailed resolution (<0.15cm), so that movement of the City's coastline as a whole can be regularly studied.

6.2 **RECOMMENDATIONS FOR FURTHER WORK/ANALYSIS**

As has been heavily repeated throughout this document, the work undertaken is very much a 'strategiclevel' assessment of sea level rise implications for the City of Nanaimo. The combined calculation approach, as recommended by the 2011 Coastal Guidelines, is a good starting point for FCL determination and an estimation of flood risk. However, as has been described, these results can be improved upon by development of bespoke 2D inundation models at locations where flood risk needs to be more refined for detailed planning/design purposes.

The project team therefore would recommend that further analysis be carried out in the Departure Bay, Protection Island and downtown areas that will more accurately define inundation limits, as well as potential

flood depths. Using a more refined flood depth in these locations, an appropriate FCL can be estimated simply by adding a suitable freeboard (e.g. 600mm) to this number. Much of the preliminary analysis has already been done in this project for such work, with many of our outputs being suitable for inputting into any detailed 2D inundation model. We are available to discuss such an undertaking with the City and interested stakeholders at any time.

As mentioned in Section 4, we would also recommend that the City continue to monitor the effect rising sea levels has on both private and public infrastructure. At a minimum, we would recommend that any storm/sanitary manholes located within the FCL contours, be sealed to prevent 'popping' when subjected to significant hydraulic gradients. The manholes located within the FCL areas that require sealing would likely operate, on occasion, under a pressurised condition. Standard manholes are not designed for pressurised operation, and as a result, the modification or replacement of the manhole(s) may be required based on further analysis. The City's pumping stations may also require review as operating rules may have to change with rising sea levels.

REPORT

L

Certification Page

This Sea Level Rise Study report was prepared for the City of Nanaimo to provide input to the City's upcoming Climate Change Resiliency Strategy. We trust the results of this study provide the City with an improved understanding of the potential hazards and increased risk that climate change brings to planning and building towards a resilient City.

The services provided by Associated Engineering (B.C.) Ltd. in the preparation of this report were conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No other warranty expressed or implied is made.

Respectfully submitted, Associated Engineering (B.C.) Ltd.

David Forde M.Eng. C.Eng. MIEI, P.Eng. Water Resources Engineer

Reviewed by: WIFNS 2018

Andrew Wiens P.Eng. Senior Water Resources Engineer

Saurst

Dr. Michael Isaacson, Ph.D., P.Eng. Senior Reviewer

GLOBAL PERSPECTIVE.

Appendix A - Details of Calculation of Wave Effects: Year 2018

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	Ν	2.138	5.710	357.02	3.51	0.114	0.419	0.790	1.208
	NNE	1.693	4.997	21.28	3.51	0.114	0.320	0.604	0.925
	NE	1.702	5.142	54.77	3.51	0.114	0.269	0.520	0.789
	ENE	2.322	6.157	74.85	3.51	0.114	0.266	0.536	0.801
01	E	4.074	6.434	84.38	3.51	0.114	0.270	0.550	0.821
	ESE	2.718	6.289	90.88	3.51	0.000	0.000	0.000	0.000
	SE	2.503	6.359	95.52	3.51	0.000	0.000	0.000	0.000
	NW	2.899	6.313	328.03	3.51	0.114	0.527	0.992	1.519
	NNW	2.896	6.268	340.89	3.51	0.114	0.545	1.020	1.565
	Ν	2.180	5.731	354.69	3.52	0.036	0.298	0.501	0.799
	NNE	1.700	4.997	20.53	3.52	0.031	0.250	0.417	0.667
	NE	1.695	5.140	54.71	3.52	0.032	0.255	0.425	0.680
	ENE	2.295	6.150	74.21	3.52	0.040	0.344	0.581	0.925
02	E	4.029	6.420	84.05	3.52	0.057	0.562	0.961	1.524
	ESE	2.654	6.277	90.58	3.52	0.041	0.354	0.598	0.951
	SE	2.449	6.347	96.03	3.52	0.037	0.310	0.523	0.833
	NW	3.079	6.313	325.87	3.52	0.034	0.283	0.477	0.760
	NNW	3.046	6.273	337.52	3.52	0.041	0.355	0.600	0.955
	Ν	2.190	5.737	353.98	3.51	0.064	0.379	0.659	1.039
	NNE	1.700	4.988	20.31	3.51	0.062	0.288	0.499	0.787
03	NE	1.695	5.140	54.97	3.51	0.061	0.247	0.430	0.677
03	ENE	2.305	6.153	74.67	3.51	0.061	0.262	0.465	0.728
	E	4.057	6.419	84.64	3.51	0.063	0.316	0.559	0.875
	ESE	2.683	6.280	91.32	3.51	0.060	0.128	0.240	0.368

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	SE	2.488	6.353	96.91	3.51	0.000	0.000	0.000	0.000
	NW	3.139	6.313	324.52	3.51	0.053	0.465	0.795	1.260
	NNW	3.089	6.275	336.26	3.51	0.054	0.482	0.823	1.305
	Ν	2.198	5.745	353.51	3.51	0.036	0.323	0.543	0.866
	NNE	1.703	4.993	20.00	3.51	0.034	0.259	0.433	0.692
	NE	1.681	5.137	54.30	3.51	0.033	0.246	0.411	0.657
	ENE	2.238	6.137	72.66	3.51	0.036	0.304	0.512	0.817
04	E	3.911	6.396	82.80	3.51	0.040	0.454	0.763	1.217
	ESE	2.516	6.261	89.31	3.51	0.035	0.281	0.473	0.754
	SE	2.310	6.321	95.14	3.51	0.033	0.235	0.396	0.631
	NW	3.185	6.311	324.46	3.51	0.038	0.373	0.628	1.001
	NNW	3.141	6.276	335.88	3.51	0.039	0.412	0.692	1.104
	Ν	2.201	5.736	351.85	3.50	0.024	0.302	0.500	0.802
	NNE	1.693	4.930	19.47	3.50	0.022	0.235	0.389	0.624
	NE	1.698	5.131	56.88	3.50	0.021	0.218	0.360	0.578
	ENE	2.392	6.159	78.54	3.50	0.023	0.266	0.441	0.707
05	E	4.378	6.416	89.74	3.50	0.026	0.380	0.631	1.012
	ESE	3.037	6.313	97.78	3.50	0.021	0.218	0.361	0.579
	SE	2.924	6.435	103.30	3.50	0.018	0.158	0.262	0.419
	NW	3.419	6.324	319.54	3.50	0.025	0.363	0.603	0.966
	NNW	3.270	6.291	332.21	3.50	0.025	0.391	0.648	1.040
	Ν	2.201	5.738	351.54	3.48	0.057	0.370	0.636	1.005
	NNE	1.692	4.923	19.41	3.48	0.052	0.276	0.471	0.747
	NE	1.696	5.131	57.06	3.48	0.049	0.234	0.400	0.634
00	ENE	2.392	6.157	78.63	3.48	0.049	0.242	0.421	0.663
06	E	4.395	6.415	90.03	3.48	0.050	0.247	0.430	0.676
	ESE	3.047	6.312	98.22	3.48	0.000	0.000	0.000	0.000
	SE	2.940	6.433	103.87	3.48	0.000	0.000	0.000	0.000
	NW	3.442	6.323	319.22	3.48	0.061	0.496	0.855	1.351

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNW	3.281	6.290	331.86	3.48	0.061	0.509	0.878	1.387
	Ν	2.198	5.752	351.92	3.48	0.020	0.292	0.482	0.775
	NNE	1.703	4.943	19.67	3.48	0.017	0.225	0.371	0.596
	NE	1.686	5.145	55.88	3.48	0.016	0.203	0.334	0.537
	ENE	2.294	6.134	74.95	3.48	0.018	0.244	0.403	0.648
07	Е	4.064	6.373	85.60	3.48	0.022	0.351	0.581	0.931
	ESE	2.690	6.258	93.22	3.48	0.015	0.191	0.316	0.508
	SE	2.526	6.319	99.18	3.48	0.152	0.222	0.516	0.738
	NW	3.368	6.310	321.48	3.48	0.022	0.372	0.616	0.988
	NNW	3.236	6.280	333.39	3.48	0.023	0.396	0.655	1.051
	Ν	2.185	5.743	350.74	3.48	0.021	0.270	0.447	0.718
	NNE	1.690	4.894	19.74	3.48	0.019	0.224	0.370	0.594
	NE	1.691	5.135	57.63	3.48	0.019	0.224	0.370	0.594
	ENE	2.386	6.149	78.49	3.48	0.022	0.299	0.496	0.795
08	E	4.458	6.408	90.77	3.48	0.029	0.483	0.801	1.284
	ESE	3.053	6.306	99.37	3.48	0.022	0.299	0.496	0.795
	SE	2.958	6.429	105.57	3.48	0.020	0.258	0.428	0.686
	NW	3.514	6.317	319.04	3.48	0.021	0.275	0.455	0.729
	NNW	3.289	6.282	331.18	3.48	0.024	0.334	0.553	0.887
	Ν	2.187	5.750	351.18	3.49	0.069	0.385	0.674	1.059
	NNE	1.699	4.913	19.95	3.49	0.079	0.299	0.530	0.829
	NE	1.694	5.149	57.01	3.49	0.090	0.255	0.470	0.724
	ENE	2.352	6.143	76.74	3.49	0.091	0.255	0.486	0.740
09	E	4.297	6.388	88.32	3.49	0.117	0.210	0.446	0.656
	ESE	2.885	6.277	96.14	3.49	0.000	0.000	0.000	0.000
	SE	2.746	6.373	102.38	3.49	0.000	0.000	0.000	0.000
	NW	3.448	6.306	320.41	3.49	0.063	0.517	0.893	1.410
	NNW	3.255	6.275	332.20	3.49	0.063	0.518	0.893	1.411
10	Ν	2.192	5.765	350.53	3.47	0.168	0.458	0.951	1.409

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNE	1.700	4.907	20.03	3.47	0.208	0.365	0.810	1.176
	NE	1.696	5.152	57.41	3.47	0.257	0.326	0.829	1.155
	ENE	2.371	6.146	77.26	3.47	0.240	0.342	0.898	1.240
	E	4.388	6.399	89.44	3.47	0.227	0.354	0.912	1.266
	ESE	2.944	6.286	97.40	3.47	0.000	0.000	0.000	0.000
	SE	2.790	6.399	102.70	3.47	0.000	0.000	0.000	0.000
	NW	3.526	6.312	320.24	3.47	0.142	0.603	1.178	1.781
	NNW	3.308	6.280	331.49	3.47	0.142	0.605	1.180	1.785
	Ν	2.203	5.781	349.14	3.49	0.637	0.560	2.334	2.893
	NNE	1.694	4.886	19.88	3.49	0.690	0.467	1.966	2.433
	NE	1.689	5.139	57.83	3.49	0.709	0.452	2.030	2.482
	ENE	2.378	6.138	78.10	3.49	0.645	0.554	2.433	2.987
11	E	4.476	6.405	91.19	3.49	0.562	0.790	2.883	3.673
	ESE	3.048	6.301	100.77	3.49	0.688	0.496	2.414	2.911
	SE	2.960	6.433	107.55	3.49	0.802	0.401	2.402	2.802
	NW	3.669	6.330	319.09	3.49	0.601	0.654	2.634	3.288
	NNW	3.414	6.295	329.63	3.49	0.584	0.703	2.701	3.404
	Ν	2.208	5.801	349.31	3.47	0.076	0.393	0.695	1.088
	NNE	1.704	4.903	20.20	3.47	0.076	0.299	0.527	0.826
	NE	1.697	5.155	57.63	3.47	0.076	0.255	0.457	0.712
	ENE	2.369	6.138	77.17	3.47	0.076	0.271	0.495	0.766
12	E	4.413	6.397	90.20	3.47	0.076	0.263	0.486	0.750
	ESE	2.941	6.277	99.23	3.47	0.000	0.000	0.000	0.000
	SE	2.809	6.377	106.03	3.47	0.000	0.000	0.000	0.000
	NW	3.639	6.324	320.30	3.47	0.075	0.544	0.955	1.499
	NNW	3.404	6.291	330.27	3.47	0.075	0.542	0.951	1.494
	Ν	2.210	5.820	349.32	3.48	0.000	0.000	0.000	0.000
13	NNE	1.711	4.911	20.48	3.48	0.201	0.287	0.654	0.940
	NE	1.699	5.166	57.35	3.48	0.174	0.354	0.749	1.102

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	ENE	2.348	6.126	76.27	3.48	0.152	0.491	0.995	1.486
	Е	4.360	6.386	89.95	3.48	0.130	0.790	1.475	2.265
	ESE	2.879	6.264	100.12	3.48	0.145	0.566	1.120	1.686
	SE	2.771	6.346	108.85	3.48	0.148	0.540	1.082	1.622
	NW	3.587	6.321	321.57	3.48	0.000	0.000	0.000	0.000
	NNW	3.386	6.289	330.74	3.48	0.000	0.000	0.000	0.000
	Ν	2.219	5.818	348.15	3.49	0.135	0.354	0.713	1.067
	NNE	1.701	4.889	20.23	3.49	0.140	0.328	0.646	0.975
	NE	1.690	5.151	57.60	3.49	0.137	0.343	0.675	1.017
	ENE	2.361	6.125	77.07	3.49	0.122	0.447	0.862	1.309
14	Е	4.437	6.393	90.82	3.49	0.110	0.692	1.265	1.957
	ESE	2.998	6.285	102.23	3.49	0.120	0.464	0.894	1.358
	SE	2.953	6.409	112.31	3.49	0.126	0.410	0.815	1.225
	NW	3.729	6.334	319.24	3.49	0.191	0.238	0.609	0.847
	NNW	3.473	6.301	328.78	3.49	0.133	0.367	0.748	1.115
	Ν	2.213	5.836	349.04	3.48	0.317	0.331	1.005	1.337
	NNE	1.712	4.913	20.60	3.48	0.278	0.355	0.904	1.260
	NE	1.695	5.166	56.94	3.48	0.252	0.391	0.947	1.338
	ENE	2.332	6.113	75.32	3.48	0.208	0.515	1.160	1.675
15	E	4.326	6.381	89.54	3.48	0.174	0.804	1.612	2.416
	ESE	2.859	6.265	100.79	3.48	0.199	0.560	1.234	1.794
	SE	2.809	6.358	112.25	3.48	0.208	0.520	1.185	1.704
	NW	3.590	6.325	322.10	3.48	0.000	0.000	0.000	0.000
	NNW	3.396	6.293	330.68	3.48	0.000	0.000	0.000	0.000
	Ν	1.995	5.759	358.97	3.49	0.154	0.304	0.652	0.956
	NNE	1.694	4.943	23.60	3.49	0.154	0.316	0.644	0.960
16	NE	1.706	5.189	56.16	3.49	0.155	0.356	0.726	1.082
	ENE	2.312	6.114	72.27	3.49	0.158	0.487	0.999	1.486
	Е	4.183	6.380	84.54	3.49	0.109	0.725	1.319	2.045

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	ESE	2.635	6.239	96.10	3.49	0.157	0.515	1.055	1.570
	SE	2.523	6.274	109.75	3.49	0.157	0.464	0.964	1.428
	NW	2.514	6.301	337.98	3.49	0.172	0.189	0.483	0.672
	NNW	2.694	6.265	344.40	3.49	0.153	0.285	0.635	0.920
	Ν	1.950	5.713	1.42	3.50	0.000	0.000	0.000	0.000
	NNE	1.697	4.983	24.72	3.50	0.273	0.221	0.626	0.847
	NE	1.705	5.201	55.31	3.50	0.264	0.348	0.890	1.238
	ENE	2.260	6.110	69.96	3.50	0.262	0.503	1.265	1.768
17	Е	4.043	6.385	83.40	3.50	0.227	0.824	1.800	2.624
	ESE	2.401	6.218	95.68	3.50	0.261	0.560	1.384	1.944
	SE	2.272	4.796	113.27	3.50	0.259	0.479	1.099	1.579
	NW	2.406	6.285	338.66	3.50	0.000	0.000	0.000	0.000
	NNW	2.561	6.251	347.08	3.50	0.000	0.000	0.000	0.000
	Ν	1.724	5.605	11.42	3.52	0.000	0.000	0.000	0.000
	NNE	1.618	4.977	30.63	3.52	0.000	0.000	0.000	0.000
	NE	1.692	5.209	55.28	3.52	0.000	0.000	0.000	0.000
	ENE	2.221	6.100	67.76	3.52	0.000	0.000	0.000	0.000
18a	Е	3.853	6.385	79.58	3.52	0.288	0.297	0.916	1.213
	ESE	2.203	6.194	89.74	3.52	0.293	0.310	0.941	1.251
	SE	1.974	4.715	105.97	3.52	0.307	0.344	0.912	1.257
	NW	1.897	6.321	342.44	3.52	0.000	0.000	0.000	0.000
	NNW	2.089	6.254	356.20	3.52	0.000	0.000	0.000	0.000
	Ν	1.736	5.616	10.82	3.53	0.000	0.000	0.000	0.000
	NNE	1.622	4.962	30.12	3.51	0.000	0.000	0.000	0.000
	NE	1.693	5.207	55.55	3.51	0.000	0.000	0.000	0.000
18b	ENE	2.229	6.101	68.52	3.51	0.000	0.000	0.000	0.000
	Е	3.861	6.372	81.19	3.51	0.308	0.345	1.064	1.409
	ESE	2.256	6.194	92.12	3.51	0.305	0.338	1.029	1.367
:	SE	2.077	4.764	108.88	3.51	0.318	0.375	0.998	1.373

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NW	1.906	6.315	344.60	3.51	0.000	0.000	0.000	0.000
	NNW	2.106	6.254	356.60	3.51	0.000	0.000	0.000	0.000
	Ν	0.771	2.419	26.06	3.53	0.000	0.000	0.000	0.000
	NNE	0.875	5.113	56.99	3.53	0.000	0.000	0.000	0.000
	NE	1.113	5.251	71.20	3.53	0.101	0.097	0.207	0.304
	ENE	1.551	6.066	73.17	3.53	0.105	0.151	0.319	0.470
19	Е	2.923	6.331	77.48	3.53	0.119	0.312	0.629	0.941
	ESE	1.723	6.154	86.67	3.53	0.101	0.241	0.476	0.717
	SE	1.527	3.137	108.65	3.53	0.096	0.215	0.379	0.593
	NW	0.888	2.772	308.31	3.53	0.000	0.000	0.000	0.000
	NNW	0.843	2.615	340.29	3.53	0.000	0.000	0.000	0.000
	Ν	0.771	2.419	26.06	3.54	0.088	0.093	0.157	0.250
	NNE	0.875	5.113	56.99	3.54	0.053	0.158	0.276	0.434
	NE	1.113	5.251	71.20	3.54	0.051	0.201	0.348	0.549
	ENE	1.551	6.066	73.17	3.54	0.047	0.274	0.471	0.745
20	E	2.923	6.331	77.48	3.54	0.047	0.465	0.788	1.252
	ESE	1.723	6.154	86.67	3.54	0.047	0.304	0.521	0.824
	SE	1.527	3.137	108.65	3.54	0.048	0.208	0.348	0.556
	NW	0.888	2.772	308.31	3.54	0.000	0.000	0.000	0.000
	NNW	0.843	2.615	340.29	3.54	0.000	0.000	0.000	0.000
	Ν	0.771	2.419	26.06	3.53	0.307	0.158	0.371	0.529
	NNE	0.875	5.113	56.99	3.53	0.203	0.217	0.534	0.751
	NE	1.113	5.251	71.20	3.53	0.118	0.231	0.460	0.691
	ENE	1.551	6.066	73.17	3.53	0.044	0.260	0.446	0.706
21	E	2.923	6.331	77.48	3.53	0.048	0.440	0.748	1.189
	ESE	1.723	6.154	86.67	3.53	0.042	0.264	0.452	0.716
	SE	1.527	3.137	108.65	3.53	0.204	0.206	0.430	0.636
	NW	0.888	2.772	308.31	3.53	0.000	0.000	0.000	0.000
	NNW	0.843	2.615	340.29	3.53	0.368	0.137	0.378	0.516

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	Ν	0.799	4.844	27.33	3.52	1.015	0.270	1.846	2.116
	NNE	0.930	5.087	56.35	3.52	1.002	0.271	1.895	2.165
	NE	1.214	5.262	71.99	3.52	0.747	0.271	1.530	1.801
	ENE	1.712	6.082	75.54	3.52	0.510	0.332	1.433	1.765
22	E	3.154	6.346	79.47	3.52	0.526	0.518	2.038	2.556
	ESE	1.877	6.165	86.37	3.52	0.609	0.286	1.500	1.786
	SE	1.657	6.133	103.05	3.52	0.000	0.000	0.000	0.000
	NW	0.928	2.832	303.57	3.52	0.964	0.183	0.947	1.130
	NNW	0.885	2.629	337.53	3.52	1.023	0.224	1.080	1.304
	Ν	1.488	5.465	20.64	3.52	0.341	0.383	1.129	1.512
	NNE	1.504	4.961	37.64	3.52	0.361	0.368	1.079	1.447
23	NE	1.658	5.215	56.90	3.52	0.349	0.376	1.103	1.479
	ENE	2.191	6.093	67.32	3.52	0.278	0.447	1.191	1.638
	E	3.761	6.376	77.83	3.52	0.171	0.579	1.205	1.783
	ESE	2.120	6.185	86.16	3.52	0.374	0.371	1.253	1.625
	SE	1.829	6.184	99.27	3.52	2.866	0.344	6.227	6.571
	NW	1.545	6.377	340.43	3.52	0.346	0.387	1.248	1.635
	NNW	1.679	6.269	3.61	3.52	0.294	0.428	1.206	1.634
	Ν	1.968	5.733	1.95	3.50	0.095	0.369	0.678	1.046
	NNE	1.705	5.024	24.82	3.50	0.094	0.319	0.580	0.899
	NE	1.699	5.204	54.02	3.50	0.094	0.306	0.560	0.866
	ENE	2.211	6.095	67.20	3.50	0.095	0.378	0.700	1.078
24	E	3.869	6.386	79.96	3.50	0.045	0.471	0.795	1.266
	ESE	2.229	6.195	93.48	3.50	0.093	0.284	0.540	0.823
	SE	2.060	4.557	114.31	3.50	0.000	0.000	0.000	0.000
	NW	2.518	6.306	338.38	3.50	0.094	0.421	0.776	1.197
	NNW	2.669	6.264	347.59	3.50	0.066	0.431	0.753	1.185
25	Ν	2.065	5.773	358.25	3.51	0.175	0.188	0.466	0.654
20	NNE	1.706	5.064	21.42	3.51	0.048	0.214	0.367	0.582

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NE	1.556	5.138	45.22	3.51	0.051	0.245	0.420	0.665
	ENE	1.907	5.942	57.14	3.51	0.059	0.329	0.573	0.902
	E	3.150	6.318	75.12	3.51	0.076	0.546	0.959	1.505
	ESE	1.712	4.032	101.78	3.51	0.053	0.256	0.433	0.689
	SE	1.763	4.303	137.03	3.51	0.049	0.220	0.373	0.593
	NW	2.697	6.283	337.78	3.51	0.000	0.000	0.000	0.000
	NNW	2.798	6.252	344.05	3.51	0.000	0.000	0.000	0.000
	Ν	1.820	5.630	6.91	3.50	0.076	0.238	0.434	0.672
	NNE	1.587	5.045	21.50	3.50	0.074	0.241	0.430	0.671
	NE	1.430	5.061	38.73	3.50	0.072	0.246	0.437	0.682
	ENE	1.674	5.679	51.24	3.50	0.058	0.292	0.508	0.800
26	Е	2.667	6.218	76.07	3.50	0.050	0.438	0.746	1.183
	ESE	1.511	3.928	108.82	3.50	0.076	0.234	0.409	0.644
	SE	1.656	4.187	134.56	3.50	0.090	0.219	0.396	0.615
	NW	2.049	6.280	350.30	3.50	0.114	0.183	0.391	0.574
	NNW	2.241	6.234	355.38	3.50	0.083	0.229	0.434	0.663
	Ν	1.910	5.719	1.16	3.50	0.000	0.000	0.000	0.000
	NNE	1.524	5.072	12.79	3.50	0.500	0.136	0.689	0.825
	NE	1.232	4.812	28.91	3.50	0.137	0.171	0.364	0.535
	ENE	1.356	5.168	44.75	3.50	0.099	0.221	0.421	0.643
27	E	2.209	4.352	79.62	3.50	0.151	0.399	0.764	1.164
	ESE	1.325	3.813	115.24	3.50	0.104	0.235	0.428	0.663
	SE	1.542	3.994	135.89	3.50	0.111	0.257	0.473	0.730
	NW	2.344	6.285	344.95	3.50	0.000	0.000	0.000	0.000
	NNW	2.516	6.248	351.30	3.50	0.000	0.000	0.000	0.000
	Ν	0.878	5.084	18.00	3.53	0.075	0.158	0.292	0.449
20	NNE	0.838	4.918	38.70	3.53	0.077	0.166	0.306	0.472
28	NE	0.885	4.971	49.28	3.53	0.079	0.179	0.330	0.509
	ENE	1.111	3.816	60.37	3.53	0.081	0.197	0.349	0.546

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	E	2.032	4.372	82.96	3.53	0.052	0.303	0.513	0.816
	ESE	1.240	3.458	112.53	3.53	0.080	0.178	0.313	0.491
	SE	1.414	3.747	132.51	3.53	0.077	0.160	0.284	0.445
	NW	1.081	3.131	316.10	3.53	0.000	0.000	0.000	0.000
	NNW	1.051	3.023	339.71	3.53	0.040	0.061	0.105	0.166
	Ν	1.616	5.581	7.85	3.51	0.012	0.172	0.283	0.455
	NNE	1.368	5.047	16.49	3.51	0.014	0.160	0.264	0.424
	NE	1.138	4.728	26.19	3.51	0.015	0.144	0.237	0.381
	ENE	1.212	3.941	37.44	3.51	0.015	0.148	0.243	0.390
29	E	1.859	4.002	71.54	3.51	0.012	0.208	0.340	0.548
	ESE	1.045	3.127	120.83	3.51	0.011	0.092	0.151	0.244
	SE	1.266	3.569	145.71	3.51	0.008	0.059	0.096	0.155
	NW	1.810	6.275	342.16	3.51	0.014	0.122	0.201	0.323
	NNW	1.951	6.210	355.93	3.51	0.012	0.181	0.298	0.478
	Ν	1.631	5.636	3.95	3.50	0.003	0.161	0.263	0.424
	NNE	1.308	5.033	11.45	3.50	0.003	0.127	0.207	0.334
	NE	1.035	4.640	20.68	3.50	0.005	0.114	0.187	0.301
	ENE	1.069	3.793	33.31	3.50	0.007	0.111	0.182	0.293
30	Е	1.581	3.379	78.02	3.50	0.007	0.088	0.144	0.232
	ESE	0.944	3.041	128.88	3.50	0.000	0.000	0.000	0.000
	SE	1.190	3.409	148.09	3.50	0.000	0.000	0.000	0.000
	NW	1.939	6.280	342.62	3.50	0.003	0.193	0.315	0.508
	NNW	2.072	6.227	354.08	3.50	0.003	0.205	0.335	0.540
	Ν	1.403	5.766	354.69	3.47	0.182	0.294	0.740	1.034
	NNE	0.985	5.080	358.36	3.47	0.267	0.218	0.616	0.834
24	NE	0.675	4.346	8.96	3.47	0.458	0.146	0.616	0.763
31	ENE	0.679	2.185	39.08	3.47	0.000	0.000	0.000	0.000
	Е	1.117	2.890	100.75	3.47	0.000	0.000	0.000	0.000
	ESE	0.804	2.813	133.28	3.47	0.000	0.000	0.000	0.000

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	SE	1.043	3.175	149.41	3.47	0.000	0.000	0.000	0.000
	NW	1.976	6.273	343.85	3.47	0.150	0.418	0.672	1.090
	NNW	2.026	6.239	351.78	3.47	0.153	0.412	0.657	1.069
	N	1.890	5.738	359.20	3.49	0.095	0.275	0.519	0.793
	NNE	1.459	5.076	8.71	3.49	2.396	0.346	4.939	5.284
	NE	1.112	4.697	23.13	3.49	3.372	0.156	3.561	3.717
	ENE	1.160	3.703	37.61	3.49	0.000	0.000	0.000	0.000
32	E	1.809	4.049	71.76	3.49	0.000	0.000	0.000	0.000
	ESE	1.055	3.186	112.60	3.49	0.000	0.000	0.000	0.000
	SE	1.263	3.479	143.07	3.49	0.000	0.000	0.000	0.000
	NW	2.413	6.288	341.87	3.49	0.105	0.417	0.787	1.204
	NNW	2.560	6.251	349.87	3.49	0.104	0.409	0.771	1.181
	Ν	1.940	5.901	348.97	3.50	0.425	0.270	1.067	1.337
	NNE	1.327	5.106	356.99	3.50	0.539	0.243	1.080	1.323
	NE	0.895	4.421	12.74	3.50	0.589	0.212	0.958	1.170
	ENE	0.923	3.062	44.89	3.50	0.556	0.223	0.759	0.981
33	E	1.821	4.208	105.53	3.50	0.332	0.371	0.958	1.330
	ESE	1.238	3.781	127.90	3.50	0.531	0.240	0.876	1.116
	SE	1.445	3.968	136.46	3.50	0.519	0.243	0.896	1.138
	NW	2.834	6.320	337.67	3.50	0.000	0.000	0.000	0.000
	NNW	2.900	6.274	342.89	3.50	0.412	0.281	1.113	1.393
	Ν	1.882	5.900	348.84	3.49	0.350	0.277	0.946	1.223
	NNE	1.285	5.111	354.57	3.49	0.373	0.222	0.778	1.000
	NE	0.864	4.336	11.30	3.49	0.381	0.190	0.642	0.832
34	ENE	0.888	3.012	55.50	3.49	0.374	0.203	0.549	0.752
	E	1.871	4.392	108.44	3.49	0.349	0.377	1.015	1.392
	ESE	1.263	3.813	120.94	3.49	0.362	0.237	0.681	0.918
	SE	1.427	3.946	127.73	3.49	0.358	0.244	0.703	0.947
	NW	2.669	6.319	341.53	3.49	0.350	0.282	0.999	1.282

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNW	2.800	6.274	344.50	3.49	0.350	0.338	1.131	1.469
	Ν	1.652	5.998	337.54	3.49	0.369	0.318	0.549	0.868
	NNE	1.019	5.182	346.57	3.49	0.478	0.239	0.665	0.904
	NE	0.655	2.418	28.63	3.49	0.560	0.157	0.519	0.676
	ENE	0.755	2.978	85.77	3.49	0.547	0.171	0.611	0.782
35	Е	1.827	4.319	99.01	3.49	0.352	0.330	0.750	1.080
	ESE	1.178	3.634	105.82	3.49	0.498	0.213	0.754	0.967
	SE	1.257	3.645	116.02	3.49	0.529	0.188	0.722	0.910
	NW	2.728	6.338	334.58	3.49	0.288	0.444	0.729	1.173
	NNW	2.679	6.295	336.14	3.49	0.287	0.447	0.733	1.180
	Ν	1.450	6.003	334.73	3.48	0.049	0.252	0.435	0.687
	NNE	0.881	5.293	350.71	3.48	0.066	0.177	0.319	0.496
	NE	0.591	2.398	43.23	3.48	0.096	0.093	0.167	0.261
	ENE	0.734	2.886	76.93	3.48	0.096	0.081	0.151	0.232
36	Е	1.679	4.095	84.24	3.48	0.061	0.132	0.233	0.366
	ESE	1.038	3.414	91.56	3.48	0.096	0.051	0.103	0.153
	SE	1.046	3.391	103.73	3.48	0.000	0.000	0.000	0.000
	NW	2.411	6.315	329.90	3.48	0.059	0.395	0.685	1.080
	NNW	2.305	6.281	331.79	3.48	0.058	0.382	0.662	1.044
	Ν	0.856	3.099	328.65	3.48	0.387	0.162	0.480	0.641
	NNE	0.544	2.185	9.52	3.48	0.611	0.132	0.458	0.590
	NE	0.471	2.249	60.58	3.48	0.644	0.113	0.434	0.547
	ENE	0.680	2.780	80.46	3.48	0.604	0.142	0.554	0.696
37	Е	1.608	3.949	88.78	3.48	0.210	0.239	0.531	0.771
	ESE	0.993	3.282	96.20	3.48	0.426	0.153	0.506	0.659
	SE	1.025	3.225	110.78	3.48	0.664	0.093	0.494	0.588
	NW	1.581	4.082	309.96	3.48	0.270	0.203	0.530	0.733
	NNW	1.370	3.876	315.25	3.48	0.273	0.200	0.514	0.714
38	Ν	1.828	5.937	344.88	3.49	0.428	0.302	0.252	0.554

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNE	1.213	5.122	351.06	3.49	0.523	0.240	0.232	0.472
	NE	0.783	3.070	13.25	3.49	0.522	0.175	0.171	0.346
	ENE	0.812	2.964	75.16	3.49	0.528	0.198	0.179	0.378
	E	1.873	4.385	105.82	3.49	0.061	0.259	0.446	0.705
	ESE	1.242	3.720	113.49	3.49	0.507	0.250	0.239	0.489
	SE	1.364	3.827	121.10	3.49	0.508	0.249	0.239	0.488
	NW	2.722	6.319	339.82	3.49	0.361	0.358	0.320	0.679
	NNW	2.799	6.277	342.24	3.49	0.340	0.389	0.357	0.746
	Ν	0.856	3.141	342.40	3.52	0.002	0.069	0.113	0.183
	NNE	0.621	2.712	349.65	3.52	0.002	0.050	0.081	0.131
	NE	0.460	2.184	10.21	3.52	0.001	0.033	0.054	0.088
	ENE	0.463	1.939	58.15	3.52	0.001	0.019	0.031	0.050
39	E	0.960	2.628	101.39	3.52	0.000	0.000	0.000	0.000
	ESE	0.723	2.584	131.67	3.52	0.000	0.000	0.000	0.000
	SE	0.924	2.857	145.77	3.52	0.000	0.000	0.000	0.000
	NW	1.281	3.888	328.01	3.52	0.002	0.105	0.171	0.276
	NNW	1.205	3.699	337.36	3.52	0.002	0.098	0.160	0.258
	Ν	1.540	5.596	5.90	3.57	0.004	0.159	0.260	0.419
	NNE	1.267	5.029	13.65	3.57	0.003	0.129	0.211	0.340
	NE	1.036	4.659	22.36	3.57	0.005	0.114	0.186	0.300
	ENE	1.088	3.803	35.19	3.57	0.024	0.149	0.247	0.396
40	E	1.634	3.444	78.93	3.57	0.023	0.151	0.249	0.399
	ESE	0.978	3.089	126.61	3.57	0.000	0.000	0.000	0.000
	SE	1.212	3.434	144.24	3.57	0.000	0.000	0.000	0.000
	NW	1.762	6.290	342.17	3.57	0.003	0.174	0.285	0.459
	NNW	1.892	6.219	355.27	3.57	0.003	0.192	0.314	0.505

Appendix B - Details of Calculation of Wave Effects: Year 2050

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	N	2.141	5.713	356.99	3.77	0.114	0.419	0.791	1.210
	NNE	1.693	4.999	21.27	3.77	0.114	0.320	0.604	0.925
	NE	1.702	5.142	54.78	3.77	0.114	0.269	0.520	0.789
	ENE	2.323	6.157	74.90	3.77	0.114	0.265	0.535	0.801
01	E	4.075	6.434	84.42	3.77	0.114	0.269	0.549	0.818
	ESE	2.720	6.289	90.92	3.77	0.000	0.000	0.000	0.000
	SE	2.507	6.360	95.57	3.77	0.000	0.000	0.000	0.000
	NW	2.906	6.315	327.87	3.77	0.114	0.528	0.993	1.521
	NNW	2.902	6.269	340.75	3.77	0.114	0.545	1.022	1.567
	Ν	2.182	5.734	354.67	3.78	0.036	0.298	0.501	0.799
	NNE	1.700	4.998	20.52	3.78	0.031	0.250	0.417	0.667
	NE	1.695	5.141	54.73	3.78	0.032	0.255	0.425	0.680
	ENE	2.296	6.151	74.26	3.78	0.040	0.344	0.581	0.925
02	E	4.030	6.420	84.09	3.78	0.057	0.562	0.961	1.524
	ESE	2.658	6.278	90.63	3.78	0.040	0.354	0.598	0.952
	SE	2.453	6.347	96.07	3.78	0.037	0.310	0.523	0.833
	NW	3.088	6.315	325.76	3.78	0.034	0.283	0.476	0.759
	NNW	3.053	6.274	337.43	3.78	0.041	0.355	0.600	0.955
	Ν	2.193	5.739	353.97	3.77	0.051	0.362	0.618	0.980
03	NNE	1.700	4.989	20.31	3.77	0.064	0.290	0.504	0.794
	NE	1.695	5.140	54.99	3.77	0.063	0.249	0.436	0.684
	ENE	2.306	6.153	74.72	3.77	0.064	0.264	0.471	0.735
	E	4.058	6.419	84.67	3.77	0.065	0.317	0.563	0.880
	ESE	2.687	6.280	91.37	3.77	0.062	0.128	0.240	0.368

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	SE	2.492	6.354	96.96	3.77	0.000	0.000	0.000	0.000
	NW	3.147	6.315	324.42	3.77	0.054	0.468	0.800	1.268
	NNW	3.097	6.276	336.17	3.77	0.055	0.484	0.828	1.312
	Ν	2.200	5.747	353.50	3.77	0.037	0.325	0.546	0.872
	NNE	1.703	4.993	20.00	3.77	0.035	0.261	0.436	0.696
	NE	1.682	5.137	54.33	3.77	0.034	0.247	0.414	0.661
	ENE	2.240	6.137	72.74	3.77	0.037	0.306	0.516	0.822
04	E	3.915	6.396	82.85	3.77	0.037	0.448	0.752	1.200
	ESE	2.521	6.261	89.38	3.77	0.036	0.282	0.477	0.759
	SE	2.316	6.321	95.26	3.77	0.034	0.236	0.399	0.634
	NW	3.193	6.313	324.38	3.77	0.036	0.369	0.631	1.001
	NNW	3.148	6.277	335.80	3.77	0.037	0.408	0.684	1.092
	Ν	2.203	5.737	351.86	3.76	0.025	0.303	0.502	0.805
	NNE	1.693	4.931	19.46	3.76	0.022	0.236	0.390	0.626
	NE	1.698	5.131	56.88	3.76	0.021	0.219	0.362	0.581
	ENE	2.393	6.159	78.57	3.76	0.024	0.267	0.443	0.710
05	E	4.379	6.417	89.76	3.76	0.026	0.381	0.632	1.013
	ESE	3.040	6.314	97.81	3.76	0.021	0.219	0.363	0.582
	SE	2.927	6.437	103.33	3.76	0.202	0.256	0.669	0.926
	NW	3.427	6.326	319.53	3.76	0.025	0.365	0.605	0.970
	NNW	3.276	6.292	332.17	3.76	0.027	0.399	0.662	1.060
	Ν	2.203	5.739	351.55	3.74	0.058	0.372	0.640	1.012
	NNE	1.692	4.924	19.40	3.74	0.053	0.278	0.475	0.752
	NE	1.696	5.131	57.05	3.74	0.050	0.235	0.404	0.639
	ENE	2.392	6.157	78.66	3.74	0.051	0.244	0.424	0.668
00	E	4.396	6.415	90.05	3.74	0.051	0.248	0.433	0.681
	ESE	3.049	6.313	98.24	3.74	0.000	0.000	0.000	0.000
	SE	2.942	6.434	103.90	3.74	0.000	0.000	0.000	0.000
	NW	3.450	6.324	319.22	3.74	0.062	0.498	0.861	1.359

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNW	3.288	6.291	331.83	3.74	0.063	0.512	0.884	1.395
	Ν	2.200	5.754	351.91	3.74	0.020	0.293	0.484	0.777
	NNE	1.703	4.944	19.67	3.74	0.017	0.226	0.372	0.597
	NE	1.687	5.145	55.90	3.74	0.016	0.203	0.335	0.538
	ENE	2.296	6.135	75.02	3.74	0.018	0.245	0.405	0.650
07	Е	4.070	6.374	85.67	3.74	0.022	0.352	0.582	0.934
	ESE	2.697	6.259	93.30	3.74	0.018	0.198	0.327	0.525
	SE	2.534	6.320	99.28	3.74	0.195	0.233	0.606	0.839
	NW	3.376	6.312	321.45	3.74	0.023	0.375	0.620	0.995
	NNW	3.244	6.281	333.35	3.74	0.023	0.398	0.658	1.055
	Ν	2.187	5.745	350.75	3.74	0.021	0.271	0.449	0.720
	NNE	1.690	4.895	19.72	3.74	0.020	0.228	0.376	0.604
	NE	1.691	5.135	57.62	3.74	0.020	0.228	0.376	0.604
	ENE	2.386	6.149	78.52	3.74	0.022	0.300	0.497	0.798
08	Е	4.459	6.409	90.78	3.74	0.029	0.484	0.803	1.287
	ESE	3.053	6.307	99.37	3.74	0.022	0.300	0.498	0.798
	SE	2.959	6.430	105.56	3.74	0.020	0.259	0.429	0.688
	NW	3.520	6.318	319.04	3.74	0.021	0.276	0.457	0.733
	NNW	3.296	6.283	331.18	3.74	0.024	0.335	0.556	0.891
	Ν	2.189	5.753	351.19	3.75	0.073	0.389	0.685	1.073
	NNE	1.699	4.914	19.93	3.75	0.084	0.302	0.541	0.843
	NE	1.694	5.149	57.02	3.75	0.099	0.259	0.486	0.745
	ENE	2.353	6.143	76.79	3.75	0.100	0.259	0.504	0.763
09	E	4.300	6.389	88.36	3.75	0.165	0.223	0.542	0.765
	ESE	2.889	6.279	96.19	3.75	0.000	0.000	0.000	0.000
	SE	2.750	6.375	102.40	3.75	0.000	0.000	0.000	0.000
	NW	3.455	6.308	320.38	3.75	0.065	0.522	0.903	1.424
	NNW	3.262	6.276	332.18	3.75	0.065	0.522	0.903	1.425
10	Ν	2.194	5.767	350.53	3.73	0.178	0.464	0.983	1.447

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNE	1.700	4.907	20.01	3.73	0.231	0.373	0.860	1.233
	NE	1.697	5.152	57.40	3.73	0.299	0.336	0.921	1.257
	ENE	2.371	6.146	77.30	3.73	0.274	0.351	0.987	1.338
	Е	4.390	6.400	89.45	3.73	0.256	0.362	0.992	1.354
	ESE	2.947	6.287	97.42	3.73	0.000	0.000	0.000	0.000
	SE	2.793	6.400	102.71	3.73	0.000	0.000	0.000	0.000
	NW	3.534	6.314	320.22	3.73	0.148	0.609	1.202	1.811
	NNW	3.315	6.281	331.47	3.73	0.148	0.611	1.203	1.814
	Ν	2.205	5.784	349.15	3.75	0.663	0.565	2.419	2.984
	NNE	1.694	4.886	19.87	3.75	0.727	0.472	2.059	2.531
	NE	1.689	5.139	57.83	3.75	0.750	0.457	2.133	2.591
	ENE	2.378	6.138	78.13	3.75	0.672	0.559	2.522	3.081
11	E	4.476	6.406	91.18	3.75	0.576	0.794	2.944	3.738
	ESE	3.049	6.302	100.77	3.75	0.722	0.501	2.522	3.024
	SE	2.961	6.433	107.56	3.75	0.858	0.406	2.557	2.963
	NW	3.676	6.331	319.11	3.75	0.620	0.659	2.710	3.370
	NNW	3.421	6.295	329.65	3.75	0.600	0.708	2.771	3.479
	Ν	2.210	5.805	349.31	3.74	0.078	0.396	0.703	1.099
	NNE	1.704	4.903	20.18	3.74	0.079	0.301	0.535	0.836
	NE	1.697	5.155	57.63	3.74	0.080	0.257	0.465	0.723
	ENE	2.369	6.138	77.20	3.74	0.080	0.273	0.504	0.777
12	Е	4.413	6.398	90.20	3.74	0.080	0.266	0.496	0.762
	ESE	2.944	6.278	99.25	3.74	0.000	0.000	0.000	0.000
	SE	2.812	6.378	106.08	3.74	0.000	0.000	0.000	0.000
	NW	3.647	6.326	320.30	3.74	0.076	0.547	0.962	1.510
	NNW	3.412	6.291	330.27	3.74	0.076	0.546	0.959	1.505
	Ν	2.212	5.825	349.32	3.75	0.000	0.000	0.000	0.000
13	NNE	1.711	4.912	20.46	3.75	0.225	0.293	0.700	0.993
	NE	1.699	5.166	57.34	3.75	0.187	0.359	0.779	1.139
Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
----------	----------------	------------	--------	-------------	---------------------	---------------	------------------------	----------------------	-----------------------
	ENE	2.348	6.126	76.29	3.75	0.159	0.495	1.017	1.513
	E	4.361	6.387	89.94	3.75	0.135	0.797	1.499	2.295
	ESE	2.882	6.265	100.13	3.75	0.150	0.570	1.138	1.708
	SE	2.775	6.347	108.89	3.75	0.153	0.544	1.102	1.646
	NW	3.595	6.322	321.56	3.75	0.000	0.000	0.000	0.000
	NNW	3.395	6.290	330.74	3.75	0.000	0.000	0.000	0.000
	Ν	2.221	5.823	348.16	3.76	0.144	0.359	0.736	1.095
	NNE	1.701	4.890	20.22	3.76	0.150	0.333	0.668	1.001
	NE	1.690	5.151	57.59	3.76	0.146	0.347	0.696	1.043
	ENE	2.361	6.125	77.08	3.76	0.128	0.451	0.880	1.331
14	E	4.436	6.394	90.80	3.76	0.113	0.695	1.277	1.972
	ESE	3.000	6.286	102.22	3.76	0.126	0.468	0.911	1.379
	SE	2.954	6.409	112.30	3.76	0.133	0.414	0.836	1.250
	NW	3.736	6.335	319.27	3.76	0.212	0.244	0.658	0.902
	NNW	3.480	6.301	328.82	3.76	0.141	0.372	0.773	1.145
	Ν	2.216	5.841	349.01	3.75	0.366	0.341	1.125	1.466
	NNE	1.713	4.913	20.58	3.75	0.311	0.363	0.977	1.340
	NE	1.695	5.167	56.94	3.75	0.275	0.398	1.004	1.402
	ENE	2.332	6.114	75.33	3.75	0.220	0.520	1.197	1.718
15	E	4.326	6.382	89.50	3.75	0.179	0.808	1.632	2.441
	ESE	2.861	6.265	100.78	3.75	0.209	0.566	1.267	1.833
	SE	2.810	6.358	112.27	3.75	0.219	0.525	1.223	1.748
	NW	3.598	6.326	322.09	3.75	0.000	0.000	0.000	0.000
	NNW	3.405	6.293	330.68	3.75	0.000	0.000	0.000	0.000
	Ν	1.999	5.765	358.87	3.76	0.155	0.305	0.656	0.961
	NNE	1.695	4.944	23.53	3.76	0.155	0.316	0.647	0.964
16	NE	1.706	5.190	56.16	3.76	0.157	0.357	0.730	1.087
	ENE	2.312	6.114	72.32	3.76	0.161	0.489	1.010	1.499
	E	4.185	6.381	84.61	3.76	0.111	0.729	1.330	2.058

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	ESE	2.637	6.240	96.18	3.76	0.162	0.519	1.071	1.589
	SE	2.524	6.275	109.85	3.76	0.161	0.466	0.975	1.441
	NW	2.525	6.301	337.88	3.76	0.200	0.194	0.533	0.727
	NNW	2.705	6.265	344.32	3.76	0.155	0.286	0.639	0.925
	Ν	1.954	5.719	1.32	3.76	0.000	0.000	0.000	0.000
	NNE	1.698	4.984	24.66	3.76	0.306	0.225	0.682	0.907
	NE	1.705	5.202	55.30	3.76	0.277	0.352	0.919	1.271
	ENE	2.260	6.110	69.98	3.76	0.271	0.506	1.293	1.799
17	Е	4.041	6.385	83.39	3.76	0.228	0.824	1.803	2.627
	ESE	2.402	6.218	95.72	3.76	0.269	0.563	1.412	1.975
	SE	2.272	4.796	113.36	3.76	0.268	0.483	1.121	1.604
	NW	2.416	6.286	338.57	3.76	0.000	0.000	0.000	0.000
	NNW	2.572	6.251	346.95	3.76	0.000	0.000	0.000	0.000
	Ν	1.729	5.610	11.25	3.78	0.000	0.000	0.000	0.000
	NNE	1.619	4.978	30.54	3.78	0.000	0.000	0.000	0.000
	NE	1.692	5.209	55.28	3.78	0.000	0.000	0.000	0.000
	ENE	2.222	6.101	67.79	3.78	0.000	0.000	0.000	0.000
18a	E	3.855	6.385	79.61	3.78	0.285	0.297	0.910	1.207
	ESE	2.204	6.195	89.81	3.78	0.290	0.310	0.935	1.245
	SE	1.974	4.711	106.08	3.78	0.303	0.344	0.906	1.250
	NW	1.903	6.321	342.28	3.78	0.000	0.000	0.000	0.000
	NNW	2.097	6.254	355.99	3.78	0.000	0.000	0.000	0.000
	Ν	1.741	5.622	10.63	3.78	0.000	0.000	0.000	0.000
	NNE	1.624	4.963	30.01	3.78	0.000	0.000	0.000	0.000
	NE	1.694	5.207	55.54	3.78	0.000	0.000	0.000	0.000
18b	ENE	2.229	6.102	68.55	3.78	0.000	0.000	0.000	0.000
	E	3.864	6.373	81.20	3.78	0.304	0.344	1.056	1.401
	ESE	2.258	6.194	92.17	3.78	0.302	0.338	1.021	1.360
	SE	2.078	4.761	108.97	3.78	0.315	0.375	0.991	1.366

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NW	1.915	6.315	344.32	3.78	0.000	0.000	0.000	0.000
	NNW	2.115	6.254	356.35	3.78	0.000	0.000	0.000	0.000
	Ν	0.775	2.424	26.08	3.79	0.000	0.000	0.000	0.000
	NNE	0.879	5.113	56.85	3.79	0.000	0.000	0.000	0.000
	NE	1.119	5.251	71.06	3.79	0.089	0.094	0.194	0.288
	ENE	1.558	6.067	73.12	3.79	0.101	0.150	0.314	0.464
19	E	2.933	6.332	77.46	3.79	0.115	0.310	0.333	0.644
	ESE	1.728	6.154	86.70	3.79	0.098	0.240	0.469	0.709
	SE	1.530	3.139	108.72	3.79	0.092	0.213	0.375	0.588
	NW	0.890	2.776	308.35	3.79	0.000	0.000	0.000	0.000
	NNW	0.846	2.619	340.30	3.79	0.000	0.000	0.000	0.000
	Ν	0.775	2.424	26.08	3.80	0.032	0.077	0.127	0.204
	NNE	0.879	5.113	56.85	3.80	0.044	0.152	0.262	0.415
	NE	1.119	5.251	71.06	3.80	0.050	0.201	0.348	0.549
	ENE	1.558	6.067	73.12	3.80	0.049	0.277	0.478	0.755
20	E	2.933	6.332	77.46	3.80	0.042	0.457	0.770	1.228
	ESE	1.728	6.154	86.70	3.80	0.049	0.307	0.527	0.834
	SE	1.530	3.139	108.72	3.80	0.050	0.210	0.352	0.561
	NW	0.890	2.776	308.35	3.80	0.000	0.000	0.000	0.000
	NNW	0.846	2.619	340.30	3.80	0.000	0.000	0.000	0.000
	Ν	0.775	2.424	26.08	3.79	0.321	0.160	0.384	0.544
	NNE	0.879	5.113	56.85	3.79	0.222	0.222	0.569	0.791
	NE	1.119	5.251	71.06	3.79	0.194	0.256	0.603	0.860
	ENE	1.558	6.067	73.12	3.79	0.050	0.268	0.464	0.733
21	Е	2.933	6.332	77.46	3.79	0.048	0.442	0.751	1.193
	ESE	1.728	6.154	86.70	3.79	0.048	0.272	0.469	0.741
	SE	1.530	3.139	108.72	3.79	0.230	0.211	0.459	0.670
	NW	0.890	2.776	308.35	3.79	0.000	0.000	0.000	0.000
	NNW	0.846	2.619	340.30	3.79	0.357	0.137	0.371	0.508

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	Ν	0.805	4.844	27.39	3.78	1.173	0.279	2.129	2.409
	NNE	0.934	5.087	56.39	3.78	1.179	0.280	2.220	2.500
	NE	1.220	5.263	71.86	3.78	1.152	0.298	2.318	2.615
	ENE	1.720	6.083	75.46	3.78	0.534	0.337	1.498	1.835
22	E	3.164	6.347	79.45	3.78	0.542	0.522	2.097	2.619
	ESE	1.883	6.166	86.38	3.78	0.766	0.300	1.861	2.161
	SE	1.660	6.135	103.14	3.78	0.000	0.000	0.000	0.000
	NW	0.929	2.835	303.54	3.78	1.015	0.185	0.994	1.179
	NNW	0.889	2.632	337.69	3.78	1.070	0.227	1.129	1.356
	Ν	1.492	5.470	20.47	3.78	0.388	0.394	1.250	1.644
	NNE	1.506	4.961	37.53	3.78	0.417	0.379	1.209	1.588
	NE	1.660	5.215	56.87	3.78	0.401	0.387	1.228	1.615
	ENE	2.192	6.094	67.35	3.78	0.304	0.455	1.268	1.722
23	E	3.765	6.377	77.88	3.78	0.174	0.581	1.216	1.798
	ESE	2.122	6.186	86.24	3.78	0.437	0.383	1.427	1.810
	SE	1.830	6.186	99.38	3.78	4.697	0.377	10.164	10.542
	NW	1.548	6.377	340.36	3.78	0.395	0.398	1.391	1.789
	NNW	1.683	6.269	3.35	3.78	0.324	0.437	1.298	1.735
	Ν	1.970	5.739	1.91	3.77	0.099	0.372	0.689	1.061
	NNE	1.706	5.025	24.78	3.77	0.098	0.322	0.590	0.912
	NE	1.699	5.204	54.02	3.77	0.098	0.309	0.571	0.879
	ENE	2.211	6.095	67.23	3.77	0.099	0.381	0.711	1.092
24	Е	3.871	6.387	79.99	3.77	0.061	0.501	0.864	1.365
	ESE	2.230	6.196	93.56	3.77	0.099	0.286	0.551	0.837
	SE	2.061	4.556	114.45	3.77	0.000	0.000	0.000	0.000
	NW	2.524	6.305	338.27	3.77	0.099	0.426	0.793	1.219
	NNW	2.677	6.264	347.47	3.77	0.068	0.435	0.763	1.198
05	Ν	2.068	5.782	358.18	3.77	0.338	0.213	0.759	0.973
20	NNE	1.706	5.064	21.42	3.77	0.048	0.215	0.369	0.584

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NE	1.558	5.139	45.28	3.77	0.052	0.246	0.422	0.668
	ENE	1.908	5.942	57.20	3.77	0.060	0.330	0.576	0.907
	E	3.155	6.318	75.15	3.77	0.077	0.548	0.965	1.513
	ESE	1.714	4.034	101.86	3.77	0.053	0.257	0.435	0.691
	SE	1.766	4.308	137.24	3.77	0.049	0.220	0.374	0.595
	NW	2.707	6.285	337.71	3.77	0.000	0.000	0.000	0.000
	NNW	2.809	6.253	343.95	3.77	0.000	0.000	0.000	0.000
	Ν	1.825	5.635	6.76	3.76	0.089	0.245	0.459	0.704
	NNE	1.589	5.046	21.47	3.76	0.085	0.248	0.452	0.699
	NE	1.432	5.062	38.77	3.76	0.082	0.252	0.456	0.709
	ENE	1.676	5.681	51.29	3.76	0.063	0.297	0.522	0.819
26	Е	2.674	6.219	76.06	3.76	0.051	0.441	0.751	1.192
	ESE	1.514	3.932	109.03	3.76	0.087	0.241	0.428	0.670
	SE	1.663	4.196	134.91	3.76	0.108	0.227	0.423	0.650
	NW	2.059	6.280	350.07	3.76	0.105	0.178	0.371	0.549
	NNW	2.253	6.235	355.12	3.76	0.100	0.237	0.467	0.704
	Ν	1.911	5.725	1.12	3.77	0.000	0.000	0.000	0.000
	NNE	1.525	5.073	12.75	3.77	0.490	0.135	0.675	0.810
	NE	1.232	4.813	28.91	3.77	0.197	0.184	0.449	0.633
	ENE	1.356	5.167	44.80	3.77	0.138	0.237	0.491	0.728
27	Е	2.211	4.353	79.84	3.77	0.147	0.398	0.758	1.157
	ESE	1.329	3.826	115.65	3.77	0.104	0.236	0.429	0.665
	SE	1.551	4.003	136.31	3.77	0.111	0.258	0.475	0.733
	NW	2.352	6.286	344.85	3.77	0.000	0.000	0.000	0.000
	NNW	2.525	6.250	351.16	3.77	0.000	0.000	0.000	0.000
	Ν	0.881	5.086	17.97	3.80	0.067	0.154	0.280	0.434
20	NNE	0.840	4.922	38.65	3.80	0.069	0.163	0.295	0.458
28	NE	0.889	4.976	49.15	3.80	0.073	0.177	0.321	0.499
	ENE	1.115	3.826	60.30	3.80	0.075	0.195	0.342	0.537

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	Е	2.040	4.375	83.10	3.80	0.052	0.304	0.515	0.819
	ESE	1.247	3.473	113.13	3.80	0.073	0.175	0.305	0.480
	SE	1.429	3.779	132.97	3.80	0.068	0.157	0.275	0.432
	NW	1.083	3.136	316.06	3.80	0.000	0.000	0.000	0.000
	NNW	1.053	3.028	339.65	3.80	0.035	0.060	0.101	0.160
	Ν	1.619	5.585	7.77	3.81	0.011	0.171	0.280	0.451
	NNE	1.370	5.048	16.44	3.81	0.014	0.160	0.263	0.422
	NE	1.138	4.728	26.19	3.81	0.013	0.140	0.229	0.369
	ENE	1.212	3.936	37.50	3.81	0.013	0.143	0.235	0.378
29	E	1.860	4.001	71.89	3.81	0.011	0.203	0.333	0.537
	ESE	1.052	3.151	121.54	3.81	0.009	0.088	0.145	0.233
	SE	1.282	3.608	146.12	3.81	0.006	0.056	0.091	0.146
	NW	1.814	6.276	342.06	3.81	0.011	0.116	0.192	0.308
	NNW	1.957	6.211	355.79	3.81	0.012	0.179	0.295	0.475
	Ν	1.637	5.640	3.84	3.76	0.003	0.164	0.268	0.432
	NNE	1.311	5.035	11.31	3.76	0.003	0.128	0.210	0.338
	NE	1.036	4.641	20.64	3.76	0.008	0.124	0.203	0.326
	ENE	1.069	3.789	33.33	3.76	0.009	0.115	0.189	0.304
30	E	1.584	3.393	78.30	3.76	0.007	0.087	0.143	0.230
	ESE	0.953	3.063	129.57	3.76	0.000	0.000	0.000	0.000
	SE	1.207	3.445	148.57	3.76	0.000	0.000	0.000	0.000
	NW	1.945	6.280	342.51	3.76	0.003	0.191	0.312	0.503
	NNW	2.080	6.228	353.92	3.76	0.003	0.204	0.333	0.536
	Ν	1.411	5.773	354.47	3.73	0.223	0.307	0.450	0.757
	NNE	0.978	5.080	357.56	3.73	0.256	0.217	0.289	0.506
6.4	NE	0.677	4.342	8.87	3.73	0.549	0.152	0.165	0.316
31	ENE	0.680	2.191	39.10	3.73	0.000	0.000	0.000	0.000
	Е	1.123	2.907	101.08	3.73	0.000	0.000	0.000	0.000
	ESE	0.816	2.839	133.83	3.73	0.000	0.000	0.000	0.000

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	SE	1.062	3.247	149.91	3.73	0.000	0.000	0.000	0.000
	NW	1.988	6.274	343.52	3.73	0.081	0.371	0.673	1.044
	NNW	2.040	6.240	351.47	3.73	0.081	0.363	0.658	1.021
	Ν	1.893	5.745	359.14	3.75	0.120	0.288	0.574	0.862
	NNE	1.460	5.078	8.67	3.75	2.724	0.355	4.240	4.595
	NE	1.112	4.697	23.14	3.75	3.297	0.155	3.478	3.632
	ENE	1.159	3.698	37.84	3.75	0.000	0.000	0.000	0.000
32	E	1.812	4.050	72.29	3.75	0.000	0.000	0.000	0.000
	ESE	1.064	3.222	113.27	3.75	0.000	0.000	0.000	0.000
	SE	1.280	3.557	143.25	3.75	0.000	0.000	0.000	0.000
	NW	2.420	6.289	341.81	3.75	0.106	0.419	0.792	1.211
	NNW	2.569	6.252	349.77	3.75	0.105	0.412	0.778	1.189
	Ν	1.944	5.910	348.95	3.76	0.475	0.277	1.178	1.455
	NNE	1.328	5.107	356.97	3.76	0.592	0.248	1.174	1.422
	NE	0.895	4.420	12.73	3.76	0.625	0.214	1.010	1.224
	ENE	0.921	3.061	44.97	3.76	0.599	0.225	0.805	1.031
33	E	1.821	4.210	105.68	3.76	0.351	0.375	0.995	1.370
	ESE	1.239	3.785	127.93	3.76	0.584	0.244	0.951	1.195
	SE	1.445	3.969	136.47	3.76	0.581	0.248	0.987	1.235
	NW	2.843	6.321	337.64	3.76	0.000	0.000	0.000	0.000
	NNW	2.909	6.275	342.86	3.76	0.456	0.287	1.216	1.503
	Ν	1.887	5.910	348.77	3.75	0.354	0.277	0.955	1.233
	NNE	1.286	5.112	354.46	3.75	0.375	0.222	0.781	1.004
	NE	0.865	4.336	11.16	3.75	0.400	0.192	0.669	0.860
24	ENE	0.888	3.013	55.59	3.75	0.383	0.204	0.559	0.763
34	E	1.872	4.396	108.51	3.75	0.351	0.378	1.019	1.397
	ESE	1.265	3.819	120.95	3.75	0.373	0.238	0.697	0.935
	SE	1.428	3.947	127.73	3.75	0.370	0.246	0.722	0.967
	NW	2.679	6.321	341.44	3.75	0.352	0.282	1.004	1.286

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNW	2.811	6.275	344.43	3.75	0.352	0.338	1.137	1.475
	Ν	1.654	6.003	337.52	3.75	0.392	0.323	0.482	0.805
	NNE	1.020	5.183	346.53	3.75	0.499	0.241	0.352	0.593
	NE	0.656	2.420	28.58	3.75	0.557	0.157	0.518	0.675
	ENE	0.756	2.981	85.80	3.75	0.541	0.170	0.605	0.776
35	E	1.830	4.323	99.04	3.75	0.372	0.334	0.506	0.840
	ESE	1.180	3.636	105.83	3.75	0.522	0.216	0.459	0.674
	SE	1.259	3.648	116.04	3.75	0.541	0.189	0.499	0.688
	NW	2.734	6.340	334.56	3.75	0.140	0.385	0.784	1.169
	NNW	2.685	6.296	336.14	3.75	0.139	0.388	0.788	1.176
	Ν	1.453	6.008	334.71	3.75	0.049	0.252	0.436	0.689
	NNE	0.882	5.295	350.72	3.75	0.039	0.160	0.273	0.433
	NE	0.593	2.400	43.23	3.75	0.050	0.082	0.139	0.221
	ENE	0.735	2.891	77.05	3.75	0.048	0.071	0.121	0.191
36	E	1.685	4.104	84.36	3.75	0.056	0.130	0.227	0.357
	ESE	1.042	3.420	91.68	3.75	0.036	0.041	0.070	0.111
	SE	1.051	3.396	103.87	3.75	0.000	0.000	0.000	0.000
	NW	2.417	6.318	329.89	3.75	0.059	0.396	0.688	1.084
	NNW	2.310	6.284	331.77	3.75	0.059	0.383	0.664	1.047
	Ν	0.857	3.100	328.62	3.75	0.529	0.172	0.616	0.788
	NNE	0.546	2.188	9.42	3.75	0.659	0.134	0.489	0.623
	NE	0.472	2.252	60.50	3.75	0.671	0.114	0.451	0.565
	ENE	0.681	2.782	80.49	3.75	0.647	0.144	0.589	0.733
37	E	1.611	3.954	88.80	3.75	0.239	0.246	0.574	0.820
	ESE	0.996	3.288	96.18	3.75	0.623	0.166	0.699	0.865
	SE	1.028	3.232	110.69	3.75	0.681	0.095	0.510	0.605
	NW	1.583	4.082	309.95	3.75	0.339	0.212	0.625	0.837
	NNW	1.372	3.876	315.23	3.75	0.344	0.209	0.608	0.817
38	Ν	1.832	5.945	344.85	3.75	0.050	0.197	0.345	0.542

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNE	1.214	5.123	350.97	3.75	0.493	0.237	0.183	0.420
	NE	0.783	3.074	13.18	3.75	0.478	0.172	0.154	0.327
	ENE	0.812	2.967	75.29	3.75	0.484	0.195	0.179	0.374
	Е	1.875	4.389	105.86	3.75	0.040	0.239	0.401	0.639
	ESE	1.244	3.724	113.50	3.75	0.042	0.152	0.256	0.408
	SE	1.365	3.831	121.11	3.75	0.042	0.152	0.256	0.407
	NW	2.731	6.321	339.78	3.75	0.039	0.230	0.393	0.622
	NNW	2.809	6.278	342.21	3.75	0.042	0.257	0.439	0.696
	Ν	0.868	3.157	342.21	3.76	0.002	0.072	0.118	0.190
	NNE	0.627	2.718	349.51	3.76	0.002	0.050	0.082	0.133
	NE	0.465	2.195	9.83	3.76	0.002	0.036	0.059	0.095
	ENE	0.466	1.947	57.91	3.76	0.001	0.019	0.032	0.051
39	Е	0.974	2.654	102.38	3.76	0.000	0.000	0.000	0.000
	ESE	0.741	2.633	132.74	3.76	0.000	0.000	0.000	0.000
	SE	0.953	2.949	146.71	3.76	0.000	0.000	0.000	0.000
	NW	1.303	3.895	327.37	3.76	0.002	0.107	0.175	0.282
	NNW	1.224	3.718	336.98	3.76	0.002	0.101	0.165	0.266
	Ν	1.544	5.599	5.84	3.83	0.004	0.161	0.264	0.425
	NNE	1.270	5.029	13.55	3.83	0.004	0.131	0.214	0.345
	NE	1.038	4.659	22.35	3.83	0.028	0.163	0.271	0.434
	ENE	1.089	3.800	35.23	3.83	0.682	0.290	1.202	1.492
40	Е	1.638	3.455	79.31	3.83	0.028	0.156	0.258	0.414
	ESE	0.988	3.112	127.32	3.83	0.000	0.000	0.000	0.000
	SE	1.230	3.483	144.76	3.83	0.000	0.000	0.000	0.000
	NW	1.766	6.290	342.02	3.83	0.003	0.176	0.288	0.465
	NNW	1.898	6.220	355.12	3.83	0.004	0.194	0.317	0.510

Appendix C - Details of Calculation of Wave Effects: Year 2100

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	Ν	2.144	5.716	356.91	4.18	0.114	0.420	0.792	1.212
	NNE	1.693	5.000	21.27	4.18	0.114	0.320	0.605	0.925
	NE	1.703	5.142	54.79	4.18	0.114	0.269	0.520	0.789
	ENE	2.324	6.157	74.97	4.18	0.114	0.265	0.535	0.800
01	E	4.077	6.434	84.47	4.18	0.114	0.268	0.547	0.815
	ESE	2.725	6.291	91.00	4.18	0.000	0.000	0.000	0.000
	SE	2.512	6.360	95.66	4.18	0.000	0.000	0.000	0.000
	NW	2.917	6.317	327.62	4.18	0.114	0.529	0.995	1.524
	NNW	2.911	6.270	340.54	4.18	0.114	0.546	1.024	1.570
	Ν	2.185	5.738	354.61	4.20	0.036	0.299	0.501	0.800
	NNE	1.700	4.998	20.52	4.20	0.031	0.250	0.417	0.667
	NE	1.696	5.141	54.75	4.20	0.032	0.254	0.425	0.679
	ENE	2.298	6.151	74.34	4.20	0.040	0.344	0.581	0.925
02	E	4.034	6.420	84.14	4.20	0.055	0.559	0.953	1.512
	ESE	2.663	6.279	90.71	4.20	0.040	0.354	0.598	0.952
	SE	2.459	6.348	96.12	4.20	0.037	0.310	0.524	0.834
	NW	3.100	6.318	325.59	4.20	0.034	0.282	0.476	0.758
	NNW	3.064	6.276	337.28	4.20	0.041	0.355	0.601	0.956
	Ν	2.195	5.742	353.91	4.19	0.053	0.365	0.624	0.989
	NNE	1.700	4.990	20.31	4.19	0.048	0.274	0.466	0.740
03	NE	1.696	5.140	55.01	4.19	0.046	0.233	0.398	0.631
03	ENE	2.308	6.153	74.80	4.19	0.047	0.248	0.428	0.676
	E	4.061	6.419	84.73	4.19	0.050	0.300	0.519	0.820
	ESE	2.692	6.281	91.44	4.19	0.063	0.127	0.239	0.366

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	SE	2.499	6.354	97.01	4.19	0.000	0.000	0.000	0.000
	NW	3.160	6.318	324.28	4.19	0.055	0.471	0.807	1.278
	NNW	3.106	6.277	336.06	4.19	0.056	0.487	0.834	1.322
	Ν	2.202	5.750	353.45	4.18	0.034	0.320	0.537	0.857
	NNE	1.703	4.994	20.00	4.18	0.033	0.258	0.430	0.688
	NE	1.683	5.138	54.37	4.18	0.032	0.244	0.408	0.652
	ENE	2.243	6.137	72.85	4.18	0.034	0.301	0.506	0.807
04	Е	3.921	6.396	82.93	4.18	0.037	0.449	0.752	1.201
	ESE	2.529	6.262	89.49	4.18	0.033	0.279	0.469	0.748
	SE	2.324	6.321	95.25	4.18	0.032	0.234	0.394	0.628
	NW	3.205	6.316	324.27	4.18	0.036	0.370	0.621	0.991
	NNW	3.159	6.279	335.68	4.18	0.037	0.408	0.685	1.093
	Ν	2.204	5.739	351.85	4.18	0.026	0.306	0.508	0.814
	NNE	1.692	4.931	19.46	4.18	0.023	0.238	0.393	0.631
	NE	1.698	5.131	56.88	4.18	0.022	0.221	0.366	0.587
	ENE	2.394	6.159	78.62	4.18	0.024	0.268	0.446	0.714
05	E	4.381	6.419	89.79	4.18	0.026	0.382	0.634	1.016
	ESE	3.043	6.316	97.85	4.18	0.022	0.220	0.367	0.587
	SE	2.930	6.440	103.37	4.18	0.271	0.271	0.829	1.101
	NW	3.439	6.329	319.51	4.18	0.028	0.374	0.622	0.995
	NNW	3.286	6.293	332.12	4.18	0.027	0.401	0.665	1.066
	Ν	2.204	5.741	351.54	4.16	0.060	0.375	0.647	1.022
	NNE	1.692	4.924	19.39	4.16	0.056	0.280	0.480	0.761
	NE	1.696	5.131	57.05	4.16	0.053	0.238	0.410	0.647
06	ENE	2.393	6.157	78.71	4.16	0.053	0.246	0.430	0.676
00	Е	4.398	6.417	90.08	4.16	0.054	0.250	0.439	0.688
	ESE	3.052	6.315	98.28	4.16	0.000	0.000	0.000	0.000
	SE	2.946	6.437	103.94	4.16	0.000	0.000	0.000	0.000
	NW	3.462	6.327	319.21	4.16	0.064	0.503	0.870	1.373

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNW	3.299	6.292	331.79	4.16	0.064	0.516	0.892	1.408
	Ν	2.203	5.756	351.89	4.15	0.021	0.296	0.490	0.786
	NNE	1.703	4.944	19.66	4.15	0.018	0.226	0.373	0.599
	NE	1.687	5.145	55.93	4.15	0.019	0.211	0.349	0.561
	ENE	2.300	6.135	75.14	4.15	0.019	0.246	0.406	0.652
07	E	4.080	6.375	85.77	4.15	0.022	0.353	0.584	0.937
	ESE	2.708	6.260	93.43	4.15	0.025	0.211	0.351	0.562
	SE	2.546	6.322	99.42	4.15	0.304	0.253	0.841	1.094
	NW	3.389	6.315	321.40	4.15	0.023	0.378	0.626	1.003
	NNW	3.256	6.282	333.29	4.15	0.024	0.401	0.663	1.064
	Ν	2.189	5.748	350.75	4.16	0.022	0.273	0.452	0.725
	NNE	1.690	4.895	19.70	4.16	0.024	0.237	0.392	0.628
	NE	1.691	5.135	57.62	4.16	0.024	0.237	0.392	0.629
	ENE	2.386	6.149	78.56	4.16	0.023	0.301	0.500	0.801
08	E	4.459	6.411	90.79	4.16	0.030	0.485	0.807	1.292
	ESE	3.055	6.308	99.38	4.16	0.023	0.302	0.500	0.802
	SE	2.960	6.432	105.56	4.16	0.021	0.260	0.432	0.692
	NW	3.530	6.320	319.03	4.16	0.022	0.278	0.460	0.738
	NNW	3.306	6.283	331.18	4.16	0.024	0.338	0.560	0.897
	Ν	2.192	5.755	351.17	4.17	0.079	0.396	0.704	1.100
	NNE	1.699	4.914	19.91	4.17	0.096	0.310	0.565	0.876
	NE	1.694	5.149	57.02	4.17	0.118	0.268	0.522	0.791
	ENE	2.355	6.144	76.86	4.17	0.120	0.268	0.548	0.817
09	Е	4.304	6.391	88.41	4.17	0.213	0.233	0.640	0.873
	ESE	2.895	6.280	96.25	4.17	0.000	0.000	0.000	0.000
	SE	2.756	6.378	102.43	4.17	0.000	0.000	0.000	0.000
	NW	3.467	6.310	320.34	4.17	0.069	0.529	0.920	1.448
	NNW	3.273	6.277	332.15	4.17	0.069	0.529	0.920	1.449
10	Ν	2.197	5.771	350.51	4.14	0.198	0.474	1.042	1.517

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNE	1.700	4.907	19.99	4.14	0.278	0.387	0.967	1.354
	NE	1.697	5.151	57.40	4.14	0.401	0.357	1.149	1.506
	ENE	2.372	6.146	77.34	4.14	0.353	0.369	1.197	1.566
	E	4.391	6.401	89.48	4.14	0.321	0.379	1.173	1.551
	ESE	2.951	6.288	97.46	4.14	0.000	0.000	0.000	0.000
	SE	2.797	6.403	102.75	4.14	0.000	0.000	0.000	0.000
	NW	3.545	6.316	320.19	4.14	0.158	0.618	1.240	1.858
	NNW	3.326	6.282	331.44	4.14	0.157	0.620	1.242	1.862
	Ν	2.207	5.788	349.14	4.17	0.708	0.573	2.569	3.141
	NNE	1.694	4.886	19.85	4.17	0.794	0.480	2.228	2.708
	NE	1.689	5.139	57.83	4.17	0.823	0.466	2.321	2.786
	ENE	2.379	6.138	78.16	4.17	0.719	0.566	2.681	3.247
11	Е	4.475	6.407	91.16	4.17	0.594	0.799	3.025	3.825
	ESE	3.050	6.303	100.77	4.17	0.781	0.510	2.715	3.225
	SE	2.962	6.434	107.59	4.17	0.959	0.415	2.841	3.256
	NW	3.686	6.333	319.14	4.17	0.653	0.668	2.843	3.511
	NNW	3.432	6.296	329.67	4.17	0.629	0.717	2.892	3.609
	Ν	2.213	5.810	349.30	4.15	0.081	0.400	0.714	1.114
	NNE	1.704	4.903	20.16	4.15	0.084	0.305	0.545	0.851
	NE	1.697	5.155	57.64	4.15	0.087	0.261	0.478	0.739
	ENE	2.370	6.138	77.24	4.15	0.086	0.277	0.517	0.794
12	E	4.414	6.399	90.20	4.15	0.087	0.270	0.510	0.780
	ESE	2.948	6.279	99.30	4.15	0.000	0.000	0.000	0.000
	SE	2.819	6.381	106.21	4.15	0.000	0.000	0.000	0.000
	NW	3.659	6.327	320.30	4.15	0.079	0.553	0.976	1.529
	NNW	3.425	6.292	330.28	4.15	0.079	0.551	0.973	1.524
	Ν	2.216	5.831	349.30	4.16	0.000	0.000	0.000	0.000
13	NNE	1.711	4.912	20.44	4.16	0.272	0.304	0.793	1.097
	NE	1.699	5.166	57.33	4.16	0.211	0.368	0.834	1.202

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	ENE	2.349	6.126	76.31	4.16	0.169	0.502	1.051	1.553
	Е	4.362	6.388	89.92	4.16	0.123	0.783	1.474	2.256
	ESE	2.887	6.266	100.15	4.16	0.158	0.577	1.165	1.741
	SE	2.781	6.350	108.94	4.16	0.161	0.551	1.132	1.684
	NW	3.609	6.324	321.56	4.16	0.000	0.000	0.000	0.000
	NNW	3.409	6.291	330.76	4.16	0.000	0.000	0.000	0.000
	Ν	2.224	5.829	348.16	4.17	0.161	0.367	0.780	1.147
	NNE	1.701	4.890	20.20	4.17	0.170	0.342	0.709	1.051
	NE	1.690	5.151	57.58	4.17	0.164	0.355	0.736	1.091
	ENE	2.361	6.124	77.11	4.17	0.138	0.458	0.910	1.368
14	Е	4.435	6.395	90.78	4.17	0.117	0.701	1.295	1.995
	ESE	3.001	6.287	102.20	4.17	0.135	0.475	0.941	1.416
	SE	2.956	6.410	112.30	4.17	0.145	0.422	0.872	1.294
	NW	3.745	6.337	319.32	4.17	0.249	0.254	0.744	0.998
	NNW	3.491	6.301	328.89	4.17	0.156	0.382	0.817	1.199
	Ν	2.219	5.849	348.97	4.16	0.473	0.359	1.396	1.755
	NNE	1.713	4.914	20.55	4.16	0.379	0.378	1.128	1.506
	NE	1.696	5.167	56.94	4.16	0.321	0.410	1.116	1.526
	ENE	2.332	6.114	75.35	4.16	0.240	0.530	1.263	1.793
15	E	4.326	6.383	89.44	4.16	0.186	0.815	1.663	2.477
	ESE	2.864	6.266	100.76	4.16	0.225	0.575	1.324	1.899
	SE	2.812	6.359	112.29	4.16	0.239	0.535	1.290	1.825
	NW	3.610	6.328	322.08	4.16	0.000	0.000	0.000	0.000
	NNW	3.418	6.294	330.69	4.16	0.000	0.000	0.000	0.000
	Ν	2.005	5.772	358.69	4.18	0.163	0.308	0.674	0.982
	NNE	1.697	4.945	23.43	4.18	0.163	0.319	0.662	0.982
16	NE	1.707	5.190	56.16	4.18	0.164	0.361	0.748	1.108
	ENE	2.313	6.115	72.39	4.18	0.168	0.493	1.031	1.524
	Е	4.186	6.382	84.70	4.18	0.115	0.734	1.346	2.080

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	ESE	2.640	6.241	96.30	4.18	0.168	0.523	1.092	1.614
	SE	2.526	6.275	110.01	4.18	0.168	0.469	0.996	1.465
	NW	2.543	6.302	337.70	4.18	0.260	0.202	0.643	0.845
	NNW	2.722	6.266	344.19	4.18	0.163	0.289	0.658	0.946
	Ν	1.960	5.727	1.16	4.18	0.000	0.000	0.000	0.000
	NNE	1.699	4.986	24.57	4.18	0.386	0.235	0.818	1.054
	NE	1.706	5.202	55.29	4.18	0.301	0.358	0.973	1.331
	ENE	2.259	6.111	70.00	4.18	0.287	0.512	1.344	1.855
17	E	4.039	6.385	83.38	4.18	0.229	0.825	1.809	2.634
	ESE	2.403	6.218	95.77	4.18	0.283	0.569	1.461	2.030
	SE	2.273	4.794	113.49	4.18	0.284	0.488	1.162	1.650
	NW	2.431	6.286	338.43	4.18	0.000	0.000	0.000	0.000
	NNW	2.589	6.252	346.76	4.18	0.000	0.000	0.000	0.000
	Ν	1.736	5.617	10.99	4.2	0.000	0.000	0.000	0.000
	NNE	1.621	4.979	30.40	4.2	0.000	0.000	0.000	0.000
	NE	1.693	5.209	55.27	4.2	0.000	0.000	0.000	0.000
	ENE	2.222	6.102	67.83	4.2	0.000	0.000	0.000	0.000
18a	E	3.858	6.386	79.65	4.2	0.281	0.298	0.904	1.202
	ESE	2.205	6.196	89.92	4.2	0.283	0.310	0.921	1.230
	SE	1.975	4.704	106.26	4.2	0.297	0.343	0.892	1.236
	NW	1.912	6.319	342.05	4.2	0.000	0.000	0.000	0.000
	NNW	2.111	6.254	355.66	4.2	0.000	0.000	0.000	0.000
	Ν	1.748	5.628	10.35	4.19	0.000	0.000	0.000	0.000
	NNE	1.626	4.965	29.85	4.19	0.000	0.000	0.000	0.000
	NE	1.695	5.207	55.53	4.19	0.000	0.000	0.000	0.000
18b	ENE	2.230	6.103	68.59	4.19	0.000	0.000	0.000	0.000
18b	E	3.868	6.374	81.21	4.19	0.296	0.343	1.036	1.379
	ESE	2.260	6.195	92.24	4.19	0.294	0.337	1.004	1.341
	SE	2.079	4.757	109.10	4.19	0.307	0.373	0.975	1.349

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NW	1.922	6.314	344.18	4.19	0.000	0.000	0.000	0.000
	NNW	2.131	6.254	355.99	4.19	0.000	0.000	0.000	0.000
	Ν	0.781	2.430	26.07	4.21	0.000	0.000	0.000	0.000
	NNE	0.887	5.114	56.77	4.21	0.000	0.000	0.000	0.000
19	NE	1.127	5.253	70.92	4.21	0.081	0.092	0.184	0.276
	ENE	1.568	6.067	73.05	4.21	0.097	0.149	0.306	0.455
	E	2.947	6.332	77.43	4.21	0.013	0.200	0.330	0.530
	ESE	1.735	6.154	86.74	4.21	0.091	0.238	0.255	0.493
	SE	1.534	3.142	108.86	4.21	0.089	0.212	0.224	0.437
	NW	0.894	2.782	308.45	4.21	0.000	0.000	0.000	0.000
	NNW	0.850	2.625	340.29	4.21	0.000	0.000	0.000	0.000
	Ν	0.781	2.430	26.07	4.22	0.027	0.074	0.123	0.198
	NNE	0.887	5.114	56.77	4.22	0.044	0.154	0.265	0.419
	NE	1.127	5.253	70.92	4.22	0.052	0.204	0.353	0.557
	ENE	1.568	6.067	73.05	4.22	0.046	0.275	0.472	0.747
20	E	2.947	6.332	77.43	4.22	0.043	0.460	0.775	1.234
	ESE	1.735	6.154	86.74	4.22	0.043	0.300	0.510	0.810
	SE	1.534	3.142	108.86	4.22	0.054	0.213	0.359	0.573
	NW	0.894	2.782	308.45	4.22	0.000	0.000	0.000	0.000
	NNW	0.850	2.625	340.29	4.22	0.000	0.000	0.000	0.000
	Ν	0.781	2.430	26.07	4.21	0.363	0.165	0.418	0.584
	NNE	0.887	5.114	56.77	4.21	0.287	0.236	0.687	0.923
	NE	1.127	5.253	70.92	4.21	0.225	0.266	0.666	0.932
	ENE	1.568	6.067	73.05	4.21	0.066	0.285	0.507	0.792
21	E	2.947	6.332	77.43	4.21	0.048	0.444	0.755	1.200
	ESE	1.735	6.154	86.74	4.21	0.062	0.287	0.508	0.795
	SE	1.534	3.142	108.86	4.21	0.298	0.222	0.535	0.757
	NW	0.894	2.782	308.45	4.21	0.000	0.000	0.000	0.000
	NNW	0.850	2.625	340.29	4.21	0.339	0.136	0.359	0.495

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	Ν	0.813	4.842	27.64	4.20	1.201	0.283	2.188	2.471
	NNE	0.941	5.085	56.64	4.20	1.206	0.283	2.274	2.557
	NE	1.229	5.263	71.68	4.20	1.218	0.303	2.459	2.763
	ENE	1.731	6.083	75.34	4.20	0.688	0.357	1.895	2.253
22	E	3.179	6.348	79.40	4.20	0.570	0.530	2.199	2.729
	ESE	1.891	6.167	86.40	4.20	1.244	0.332	2.970	3.302
	SE	1.665	6.139	103.33	4.20	0.000	0.000	0.000	0.000
	NW	0.932	2.839	303.48	4.20	1.053	0.187	1.031	1.218
	NNW	0.893	2.635	337.91	4.20	1.115	0.230	1.177	1.407
	Ν	1.497	5.476	20.22	4.20	0.498	0.415	1.538	1.954
	NNE	1.509	4.962	37.36	4.20	0.558	0.403	1.538	1.940
	NE	1.661	5.215	56.83	4.20	0.527	0.409	1.536	1.945
	ENE	2.194	6.095	67.39	4.20	0.356	0.470	1.429	1.899
23	E	3.770	6.378	77.95	4.20	0.216	0.607	1.368	1.975
	ESE	2.125	6.186	86.38	4.20	0.601	0.408	1.884	2.292
	SE	1.833	6.188	99.57	4.20	4.733	0.375	10.194	10.569
	NW	1.552	6.377	340.12	4.20	0.514	0.419	1.740	2.159
	NNW	1.690	6.268	2.98	4.20	0.388	0.454	1.494	1.948
	Ν	1.975	5.746	1.78	4.18	0.105	0.378	0.708	1.086
	NNE	1.706	5.026	24.72	4.18	0.106	0.327	0.607	0.934
	NE	1.699	5.205	54.03	4.18	0.106	0.314	0.588	0.902
	ENE	2.211	6.096	67.28	4.18	0.105	0.386	0.729	1.115
24	E	3.872	6.387	80.03	4.18	0.068	0.512	0.893	1.406
	ESE	2.231	6.196	93.68	4.18	0.108	0.291	0.571	0.862
	SE	2.062	4.556	114.65	4.18	0.000	0.000	0.000	0.000
	NW	2.535	6.306	338.13	4.18	0.105	0.432	0.813	1.245
	NNW	2.690	6.264	347.29	4.18	0.102	0.473	0.877	1.350
25	Ν	2.072	5.793	358.08	4.19	0.409	0.221	0.892	1.112
20	NNE	1.707	5.065	21.41	4.19	0.051	0.217	0.374	0.591

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NE	1.560	5.140	45.38	4.19	0.054	0.248	0.428	0.676
	ENE	1.910	5.943	57.29	4.19	0.062	0.333	0.582	0.915
	Е	3.162	6.317	75.18	4.19	0.079	0.552	0.973	1.525
	ESE	1.718	4.038	101.96	4.19	0.055	0.259	0.440	0.699
	SE	1.772	4.317	137.55	4.19	0.051	0.222	0.379	0.601
	NW	2.723	6.287	337.59	4.19	0.000	0.000	0.000	0.000
	NNW	2.826	6.255	343.79	4.19	0.000	0.000	0.000	0.000
	Ν	1.832	5.643	6.54	4.18	0.117	0.259	0.515	0.774
	NNE	1.592	5.048	21.40	4.18	0.111	0.262	0.502	0.763
	NE	1.434	5.065	38.83	4.18	0.104	0.265	0.501	0.767
	ENE	1.679	5.684	51.37	4.18	0.073	0.306	0.546	0.853
26	E	2.684	6.222	76.06	4.18	0.053	0.445	0.761	1.206
	ESE	1.519	3.937	109.32	4.18	0.116	0.256	0.473	0.729
	SE	1.671	4.209	135.42	4.18	0.117	0.231	0.437	0.667
	NW	2.074	6.281	349.72	4.18	0.114	0.178	0.382	0.561
	NNW	2.271	6.237	354.75	4.18	0.117	0.243	0.501	0.744
	Ν	1.916	5.733	0.99	4.18	0.000	0.000	0.000	0.000
	NNE	1.526	5.074	12.69	4.18	0.419	0.130	0.579	0.710
	NE	1.232	4.814	28.92	4.18	0.426	0.215	0.560	0.775
	ENE	1.355	5.165	44.88	4.18	0.145	0.239	0.503	0.741
27	E	2.214	4.356	80.20	4.18	0.132	0.390	0.727	1.117
	ESE	1.335	3.836	116.21	4.18	0.143	0.252	0.488	0.740
	SE	1.564	4.016	136.92	4.18	0.109	0.258	0.473	0.732
	NW	2.364	6.288	344.71	4.18	0.000	0.000	0.000	0.000
	NNW	2.540	6.252	350.93	4.18	0.000	0.000	0.000	0.000
	Ν	0.884	5.089	17.90	4.21	0.055	0.149	0.262	0.411
00	NNE	0.845	4.929	38.59	4.21	0.054	0.156	0.274	0.429
28	NE	0.894	4.984	49.04	4.21	0.057	0.170	0.298	0.468
	ENE	1.121	3.837	60.22	4.21	0.061	0.188	0.324	0.512

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	E	2.053	4.379	83.32	4.21	0.050	0.303	0.511	0.814
	ESE	1.257	3.497	113.95	4.21	0.057	0.167	0.285	0.452
	SE	1.449	3.839	133.73	4.21	0.056	0.151	0.260	0.412
	NW	1.086	3.143	315.98	4.21	0.000	0.000	0.000	0.000
	NNW	1.054	3.037	339.39	4.21	0.029	0.056	0.094	0.151
	Ν	1.624	5.591	7.64	4.22	0.013	0.175	0.288	0.464
	NNE	1.371	5.050	16.38	4.22	0.012	0.156	0.256	0.411
	NE	1.138	4.728	26.20	4.22	0.011	0.135	0.221	0.356
	ENE	1.211	3.929	37.61	4.22	0.011	0.138	0.227	0.366
29	E	1.861	4.002	72.44	4.22	0.012	0.207	0.340	0.547
	ESE	1.062	3.193	122.50	4.22	0.007	0.085	0.140	0.225
	SE	1.303	3.647	146.79	4.22	0.005	0.052	0.085	0.137
	NW	1.820	6.278	341.91	4.22	0.009	0.112	0.184	0.296
	NNW	1.966	6.214	355.56	4.22	0.013	0.184	0.302	0.486
	Ν	1.645	5.644	3.68	4.17	0.003	0.163	0.266	0.429
	NNE	1.316	5.036	11.22	4.17	0.003	0.131	0.214	0.345
	NE	1.038	4.641	20.60	4.17	0.007	0.120	0.196	0.316
	ENE	1.070	3.785	33.38	4.17	0.006	0.107	0.176	0.283
30	E	1.588	3.414	78.76	4.17	0.010	0.091	0.149	0.240
	ESE	0.965	3.093	130.41	4.17	0.000	0.000	0.000	0.000
	SE	1.229	3.520	149.32	4.17	0.000	0.000	0.000	0.000
	NW	1.955	6.281	342.35	4.17	0.003	0.193	0.316	0.509
	NNW	2.094	6.230	353.66	4.17	0.003	0.208	0.340	0.547
	Ν	1.421	5.781	354.14	4.14	0.074	0.248	0.449	0.697
	NNE	0.982	5.079	357.28	4.14	0.059	0.162	0.288	0.450
04	NE	0.680	4.337	8.82	4.14	0.456	0.146	0.162	0.309
31	ENE	0.684	2.198	39.43	4.14	0.000	0.000	0.000	0.000
	Е	1.131	2.936	101.60	4.14	0.000	0.000	0.000	0.000
	ESE	0.830	2.881	134.53	4.14	0.000	0.000	0.000	0.000

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	SE	1.087	3.308	150.65	4.14	0.000	0.000	0.000	0.000
	NW	2.008	6.275	343.04	4.14	0.084	0.376	0.685	1.061
	NNW	2.062	6.241	351.00	4.14	0.084	0.368	0.671	1.039
	Ν	1.898	5.753	359.04	4.17	0.205	0.322	0.770	1.092
32	NNE	1.461	5.079	8.62	4.17	2.977	0.362	3.390	3.752
	NE	1.112	4.697	23.17	4.17	3.177	0.153	3.344	3.498
	ENE	1.159	3.691	38.14	4.17	0.000	0.000	0.000	0.000
	E	1.816	4.051	73.14	4.17	0.000	0.000	0.000	0.000
	ESE	1.077	3.283	114.14	4.17	0.000	0.000	0.000	0.000
	SE	1.304	3.650	143.57	4.17	0.000	0.000	0.000	0.000
	NW	2.433	6.292	341.71	4.17	0.111	0.424	0.808	1.233
	NNW	2.583	6.255	349.61	4.17	0.110	0.418	0.797	1.215
	Ν	1.948	5.921	348.92	4.18	0.600	0.290	1.456	1.746
	NNE	1.328	5.109	356.94	4.18	0.640	0.251	1.261	1.513
	NE	0.894	4.419	12.71	4.18	0.699	0.219	1.119	1.338
	ENE	0.918	3.059	45.09	4.18	0.663	0.230	0.875	1.105
33	E	1.820	4.214	105.91	4.18	0.386	0.382	1.063	1.445
	ESE	1.240	3.789	127.96	4.18	0.639	0.249	1.029	1.278
	SE	1.447	3.970	136.49	4.18	0.635	0.253	1.066	1.319
	NW	2.856	6.324	337.58	4.18	0.000	0.000	0.000	0.000
	NNW	2.925	6.278	342.81	4.18	0.589	0.302	1.532	1.834
	Ν	1.894	5.920	348.66	4.17	0.374	0.281	1.003	1.284
	NNE	1.289	5.114	354.31	4.17	0.399	0.225	0.823	1.048
	NE	0.865	4.336	11.09	4.17	0.432	0.195	0.712	0.906
34	ENE	0.886	3.014	55.81	4.17	0.419	0.207	0.596	0.803
54	E	1.874	4.403	108.63	4.17	0.354	0.379	1.028	1.406
	ESE	1.266	3.827	120.96	4.17	0.382	0.240	0.711	0.951
	SE	1.430	3.950	127.74	4.17	0.378	0.247	0.734	0.981
	NW	2.695	6.323	341.32	4.17	0.373	0.285	1.050	1.335

C-11

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNW	2.829	6.278	344.33	4.17	0.356	0.340	1.149	1.488
	Ν	1.656	6.010	337.47	4.17	0.123	0.256	0.520	0.776
	NNE	1.022	5.184	346.47	4.17	0.483	0.240	0.297	0.537
	NE	0.657	2.421	28.54	4.17	0.587	0.159	0.193	0.352
	ENE	0.757	2.986	85.90	4.17	0.578	0.173	0.208	0.381
35	Е	1.834	4.328	99.08	4.17	0.124	0.269	0.511	0.780
	ESE	1.183	3.641	105.86	4.17	0.509	0.215	0.262	0.477
	SE	1.262	3.652	116.06	4.17	0.556	0.190	0.225	0.415
	NW	2.743	6.344	334.53	4.17	0.112	0.369	0.702	1.071
	NNW	2.695	6.299	336.13	4.17	0.113	0.373	0.707	1.080
	Ν	1.456	6.015	334.69	4.17	0.050	0.253	0.439	0.692
	NNE	0.884	5.297	350.74	4.17	0.039	0.160	0.274	0.435
	NE	0.594	2.404	43.37	4.17	0.024	0.071	0.118	0.189
	ENE	0.738	2.901	77.29	4.17	0.021	0.060	0.099	0.159
36	E	1.693	4.119	84.55	4.17	0.033	0.116	0.196	0.312
	ESE	1.048	3.431	91.84	4.17	0.000	0.000	0.000	0.000
	SE	1.057	3.404	104.03	4.17	0.000	0.000	0.000	0.000
	NW	2.425	6.322	329.87	4.17	0.060	0.398	0.692	1.090
	NNW	2.318	6.287	331.74	4.17	0.059	0.385	0.668	1.053
	Ν	0.859	3.101	328.57	4.17	0.658	0.180	0.743	0.924
	NNE	0.549	2.191	9.28	4.17	0.689	0.136	0.510	0.646
	NE	0.472	2.254	60.50	4.17	0.698	0.115	0.467	0.582
	ENE	0.683	2.785	80.52	4.17	0.688	0.146	0.622	0.768
37	E	1.616	3.961	88.83	4.17	0.308	0.260	0.679	0.939
	ESE	0.999	3.296	96.16	4.17	0.675	0.169	0.754	0.923
	SE	1.031	3.241	110.61	4.17	0.704	0.097	0.531	0.628
	NW	1.587	4.082	309.93	4.17	0.440	0.224	0.768	0.992
	NNW	1.375	3.875	315.21	3.49	0.000	0.000	0.000	0.000
38	Ν	1.837	5.955	344.79	4.17	0.032	0.181	0.306	0.487

Transect	Wind sector	Hm0 (m)	Tp (s)	MWD (°N)	SWL (m CGVD2013)	Slope (-)	Static setup (m)	Wave Runup (m)	Wave effect (m)
	NNE	1.215	5.125	350.89	4.17	0.025	0.131	0.219	0.349
	NE	0.784	3.077	13.12	4.17	0.019	0.090	0.148	0.238
	ENE	0.812	2.970	75.55	4.17	0.021	0.104	0.172	0.276
	Е	1.879	4.394	105.91	4.17	0.040	0.239	0.401	0.640
	ESE	1.247	3.730	113.52	4.17	0.027	0.139	0.230	0.369
	SE	1.368	3.838	121.12	4.17	0.026	0.138	0.230	0.368
	NW	2.745	6.324	339.71	4.17	0.039	0.230	0.393	0.624
	NNW	2.826	6.281	342.17	4.17	0.042	0.258	0.441	0.698
	Ν	0.887	3.182	341.99	4.14	0.002	0.074	0.122	0.196
	NNE	0.637	2.739	349.13	4.14	0.002	0.053	0.086	0.139
	NE	0.470	2.206	9.68	4.14	0.002	0.036	0.060	0.096
	ENE	0.471	1.957	57.45	4.14	0.004	0.026	0.042	0.068
39	Е	0.998	2.703	103.82	4.14	0.000	0.000	0.000	0.000
	ESE	0.761	2.725	133.85	4.14	0.000	0.000	0.000	0.000
	SE	0.987	3.040	147.81	4.14	0.000	0.000	0.000	0.000
	NW	1.334	3.907	326.58	4.14	0.002	0.112	0.184	0.296
	NNW	1.251	3.750	336.42	4.14	0.002	0.105	0.172	0.277
	Ν	1.551	5.602	5.74	4.23	0.004	0.163	0.266	0.429
	NNE	1.274	5.030	13.54	4.23	0.004	0.136	0.222	0.358
	NE	1.040	4.659	22.36	4.23	0.681	0.309	1.429	1.738
	ENE	1.090	3.797	35.34	4.23	0.697	0.292	1.224	1.516
40	E	1.645	3.474	79.91	4.23	0.695	0.294	1.163	1.457
	ESE	1.001	3.149	128.20	4.23	0.000	0.000	0.000	0.000
	SE	1.254	3.566	145.60	4.23	0.000	0.000	0.000	0.000
	NW	1.773	6.290	341.81	4.23	0.004	0.182	0.298	0.480
	NNW	1.908	6.221	354.87	4.23	0.004	0.195	0.318	0.513

Appendix D - FCL Mapping: Year 2018

Appendix E - FCL Mapping: Year 2050

Appendix F - FCL Mapping: Year 2100

